Le JWST vient d’effectuer une mesure historique : la première mesure de l’émission thermique d’une planète rocheuse tempérée

Situé à environ 40 années-lumière, le système TRAPPIST-1 est un système constitué de sept planètes rocheuses de type terrestre. Il fascine les astrophysiciennes et astrophysiciens depuis sa découverte en 2016 par bien des aspects. Il a été observé sans relâche par de nombreux télescopes au sol et dans l’espace. Le JWST a récemment permis de franchir une nouvelle étape dans notre quête insatiable des exoplanètes : mesurer directement la température d’une exoplanète rocheuse tempérée ! Cette mesure historique permet de penser que si la planète TRAPPIST-1-b, la plus proche de son étoile (une naine ultra froide), une atmosphère peu épaisse, sans ou avec très peu de CO2.


Ces résultats sont publiés dans la prestigieuse revue Nature


TRAPPIST-1, un système stupéfiant

Figure 1 : Système planétaire de TRAPPIST-1 en comparaison avec le système solaire interne.
Crédit : Emmanuelle MICHEL / AFP

Le système TRAPPIST-1 est un système tout à fait stupéfiant. Tout d’abord, son étoile hôte est une naine rouge ultra froide (de type M) : sa température effective est deux fois moins élevée que celle du Soleil car sa masse et sa taille qui ne sont que d’environ 10% des valeurs solaires. Son cortège de planètes est constitué de 7 rocheuses dont les tailles et les masses sont comparables à celles de la Terre (entre 0,77 et 1,15 R⊕ et entre 0,33 et 1,16 M⊕). Enfin, ce système est très compact, les planètes sont beaucoup plus proches de leur étoile que Mercure ne l’est du Soleil ; La plus lointaine étant 6 fois plus proche (cf. Figure 1). Une telle compacité implique une forte interaction gravitationnelle entre les planètes. Sans cesse, elles sont ralenties ou accélérées dans leur course par leurs voisines. On appelle cela la variation des temps de transit (TTV). Cette proximité engendre une résonance dite de Laplace, c’est-à-dire que les planètes sont couplées gravitationnellement par 3, créant une chaîne de 3 par 3 exoplanètes : TRAPPIST-1 c est influencée par les planètes b et d, TRAPPIST-1-d par c et e, et ainsi de suite). Cette résonance peut être observée dans notre système solaire : Les lunes de Jupiter. En effet, Io, Europa et Ganymède sont également en résonance de Laplace, leurs périodes sont commensurables.

 

« Il est plus facile de caractériser les planètes terrestres autour d’étoiles plus petites et plus froides. Si nous voulons comprendre l’habitabilité autour des étoiles M, le système TRAPPIST-1 est un excellent laboratoire. Ce sont les meilleures cibles dont nous disposons pour étudier l’atmosphère des planètes rocheuses »

Explique Elsa Ducrot astrophysicienne au Département d’Astrophysique (DAp) du CEA Paris-Saclay.

Une découverte jalonnée de surprise

Figure 2 : Le télescope TRAPPIST-Sud est installé à l’Observatoire de l’ESO de La Silla (Chili).
Crédit: E. Jehin/ESO

En 2016, une campagne d’observation d’exoplanètes a été initiée dans le cadre du programme SPECULOOS (Search for habitable Planets EClipsing Ultra-cOOl Stars) dont le but était d’observer les naines rouges les plus brillantes dans le ciel à la recherche de planètes de type terrestre dans la zone habitable de leur étoile. Ces petites étoiles offrent plusieurs avantages pour les chasseurs d’exoplanètes : 1. Elles sont statistiquement plus nombreuses dans le ciel. 2. Leur petite taille permet d’observer plus facilement des planètes de type terrestre car le ratio disque planétaire sur disque stellaire est bien plus grand (de l’ordre de 1%). 3. La très faible température effective de l’étoile implique une zone habitable plus proche d’elle. Or, une planète plus proche implique une période orbitale plus courte et donc des transits plus nombreux. SPECULOOS a commencé son programme d’observation avec le petit télescope de 60 cm de diamètre nommé TRAPPIST-Sud (TRAnsiting Planets and PlanetesImals Small Telescope–South), situé au Chili (hémisphère sud).

Le 2 mai 2016, trois planètes sont détectées par TRAPPIST-Sud autour d’une naine rouge ultra froide. Etant le premier système observé par cet instrument, on nomme alors ce système « TRAPPIST-1 ». Aussitôt, l’équipe de chercheuses et de chercheurs du programme SPECULOOS demande du temps d’observation avec le télescope spatial Spitzer pendant 20 jours consécutifs afin d’approfondir les recherches. Et quelle ne fut pas leur surprise de découvrir par transit quatre autres planètes, plus éloignées de leur étoile que les précédentes. Le cumul des observations de ces planètes devant leur étoile permet de connaitre la dynamique du système, à partir de laquelle les scientifiques ont pu déduire par le calcul la présence de la septième planète, comme Le Verrier l’avait fait avec Neptune en 1846 en observant les mouvements de Uranus. La chorégraphie planétaire permet également de déduire précisément la masse des planètes à partir des TTV. Quant aux rayons des planètes, elles sont déduites par la quantité de lumière obstruée pendant le transit. Connaissant les masses et les rayons, on calcule facilement la densité moyenne des planètes qui nous permet d’intuiter la nature de leur composition. En moyenne, elles sont 9% moins denses que la Terre. On peut alors imaginer des planètes avec un cœur comme celui de la Terre mais plus riche en vapeur d’eau, ou alors un cœur appauvri en fer, ou bien un cœur non différencié (sans noyau). Nous ne disposons pas encore assez d’information aujourd’hui pour discriminer les modèles planétaires.  

Après l’étude de la mécanique orbitale du système, place à la caractérisation des atmosphères. Le télescope spatiale Hubble est alors mis à contribution. Les observations ont permis d’affirmer qu’aucune planète n’avait d’atmosphère primaire, c’est-à-dire riche en hydrogène comme Jupiter, mais ne nous a pas permis de confirmer la présence d’atmosphère secondaire (comme Vénus ou la Terre), ni de déterminer sa composition.

L’observation de l’atmosphère : Le JWST à la rescousse

Figure 3 : Courbe de lumière montrant le changement de luminosité du système TRAPPIST-1 lorsque la planète la plus interne, TRAPPIST-1 b, se déplace derrière l’étoile. Ce phénomène est connu sous le nom d’éclipse secondaire.

Crédits : NASA, ESA, CSA, J. Olmsted (STScI) ; Science : Thomas Greene (NASA Ames), Taylor Bell (BAERI), Elsa Ducrot (CEA), Pierre-Olivier Lagage (CEA) et Achrène Dyrek (CEA)

Au cours de sa ronde, deux moments sont propices à l’observation de l’atmosphère d’une exoplanète depuis la Terre (cf. Figure 3) : lorsque la planète passe devant son étoile (transit) et juste avant qu’elle ne disparaisse derrière (éclipse secondaire). La première position permet de mesurer le spectre de transmission de l’atmosphère. On le déduit en soustrayant le spectre mesuré lors d’un transit au spectre stellaire hors transit. Cette mesure est très difficile car la diminution de l’intensité stellaire liée à l’absorption par l’atmosphère est de l’ordre de quelques dixièmes voire centièmes de pourcent… Inutile de dire que cela représente un challenge, d’autant plus que la surface de l’étoile, en particulier d’une naine rouge, peut contenir de nombreuses tâches et facules liées à l’activité magnétique de l’étoile. La seconde position permet de mesurer le spectre émis par la planète. Cette mesure est encore plus compliquée à obtenir car la lumière émise par la planète est extrêmement faible par rapport à celle de l’étoile. Néanmoins, elle permet d’obtenir directement la température de brillance de la planète (émission du corps noir) sans contamination par les hétérogénéités de la surface stellaire.

En émission, il est préférable d’observer la planète dans l’infrarouge (IR) pour deux raisons. Premièrement, après avoir absorbé essentiellement le rayonnement visible/proche IR de l’étoile, une planète réémet dans le moyen IR (MIR). L’étoile quant à elle, étant beaucoup plus chaude à cause des réactions nucléaires en son cœur, son spectre est davantage vers les plus courtes longueurs d’onde, avec donc une plus faible contribution dans l’IR. Le contraste d’observation est alors meilleur que dans le visible. Deuxièmement, les molécules que l’on souhaite détecter, comme le dioxyde de carbone (CO2) par exemple, ont leurs signatures spectrales particulièrement marquées dans l’IR.

 

C’est donc tout naturellement que les scientifiques se sont tournés vers le nouvel observatoire spatial : le JWST. Son œil de 6,5 m de diamètre permet non seulement de collecter beaucoup plus de lumière mais tout l’observatoire est optimisé pour observer dans le proche et moyen IR. Il est donc parfait pour regarder les autres mondes rocheux tempérés et percer leurs mystères.

 

Un focus particulier est fait sur la planète TRAPPIST-1 b car étant la plus proche de son étoile, elle émet davantage en IR thermique que les autres. Deux campagnes d’observation de l’émission de la planète par imagerie à filtre étroite ont été programmées : la première, menée par une équipe de la NASA en collaboration avec une équipe du CEA Paris-Saclay, se fait avec l’imageur MIRIm, développé au CEA Paris-Saclay, avec le filtre à λ=15 µm. Et la seconde observation est avec le filtre λ=12,8 µm, et sera menée par l’équipe du CEA Paris-Saclay cette fois-ci, en collaboration avec la même équipe de la NASA. A partir de simulations numériques, les scientifiques ont estimé que cinq transits (soit ~25h d’observation avec le JWST) suffisent pour mesurer l’émission de la planète avec un signal sur bruit significatif, c’est-à-dire un signal suffisamment intense pour affirmer que l’observation vient de la planète et non des erreurs de mesure des instruments. Les filtres à λ=15 µm et λ=12,8 µm n’ont pas été choisis au hasard : en deux mesures, ces longueurs d’onde permettent de suggérer la présence d’une atmosphère, et si oui, si elle contient ou non du CO2 qui possède une bande d’absorption caractéristique à 15 µm.  

Des résultats chauds !

Figure 4 : Ce graphique compare la température du côté jour de TRAPPIST-1 b, mesurée par l’instrument MIRI (Mid-Infrared Instrument) de Webb, à des modèles informatiques de ce que serait la température dans diverses conditions (avec et sans atmosphère). La température de Mercure et de la Terre sont indiquée à titre de référence. La luminosité du côté jour de TRAPPIST-1 b à 15 microns correspond à une température d’environ 500 Kelvin. Cela signifie que la mesure de la température de brillance de la planète à 15 microns avec le JWST est théoriquement en accord avec la valeur attendue pour une planète possédant une surface sombre et ayant peu ou pas d’atmosphère. Des observations dans des longueurs d’onde différentes sont nécessaires pour confirmer ce résultat.  
Crédits : Illustration : NASA, ESA, CSA, J. Olmsted (STScI) ; Science : Thomas Greene (NASA Ames), Taylor Bell (BAERI), Elsa Ducrot (CEA), Pierre-Olivier Lagage (CEA) et Achrène Dyrek (CEA)

Pour la première fois, une équipe de scientifique a réussi à observer l’émission thermique d’une planète rocheuse tempérée ! Le signal cumulé des 5 transits avec l’imageur MIRIm à 15 µm a permis d’atteindre un seuil de confiance de 8,7 sigma sur le résultat, soit presque trois fois plus pour qu’il n’en faut pour affirmer qu’un résultat est significatif.

« Avec le télescope Spitzer dans le proche infrarouge nous n’avions aucune détection même en combinant 28 occultations de TRAPPIST-1 b, avec MIRI on voit l’occultation de la planète en une seule visite !  »

S’exalte Elsa Ducrot au vu de ce résultat.

La luminosité mesurée du côté jour de TRAPPIST-1 b correspond à une température d’environ 503 K +/-26 K. Pour savoir si la planète a ou non une atmosphère, on compare cette valeur mesurée à des valeurs théoriques correspondant à divers modèles planétaires dans diverses conditions, basés sur nos connaissances du système, comme la température de l’étoile, la distance orbitale de la planète, et le fait que celle-ci soit verrouillée gravitationnellement par effets de marée, c’est-à-dire que les planètes présentent toujours la même face à leur étoile, comme la Lune avec la Terre.

 

On constate que la température mesurée est très proche de celle d’un corps noir parfait (albédo proche de zéro), soit un corps tellement sombre qu’il absorbe toute la lumière de son étoile. On peut également affirmer qu’il n’y a pas ou très peu d’atmosphère. Si la planète avait une atmosphère, la température aurait été inférieure à celle mesurée car la chaleur reçue de l’étoile se serait redistribuée dans l’ensemble de l’atmosphère planétaire, faisant ainsi baisser la température côté jour, jusqu’à une centaine de degré. Enfin, nous pouvons également affirmer qu’il n’y a pas de CO2. Si l’atmosphère en contenait une quantité même petite, elle émettrait significativement moins de lumière à 15 microns et semblerait encore plus froide car le CO2 absorbe le rayonnement à cette longueur d’onde ; c’est le principe de l’effet de serre. La figure 4 illustre la température de TRAPPIST-1 b mesurée en la comparant aux modèles avec et sans atmosphère ainsi que la température de la Terre et de Mercure comme références. On remarque alors qu’étant bien plus proche de son étoile, TRAPPIST-1 b est pourtant plus froide que Mercure, qui se compose de roches nues et d’aucune atmosphère significative, car elle reçoit environ 1,6 fois plus d’énergie du Soleil que TRAPPIST-1 b n’en reçoit de son étoile.

« Il y a une cible dont je rêvais”. C’était celle-ci. C’est la première fois que nous pouvons détecter les émissions d’une planète rocheuse et tempérée. C’est une étape vraiment importante dans l’histoire de l’étude des exoplanètes »

S’enthousiasme Pierre-Olivier Lagage, astrophysicien au CEA et directeur du DAp, qui a travaillé au développement de l’instrument MIRI pendant plus de vingt ans.

Une enquête à suivre…

Figure 5 : Représentation schématique d’un transit planétaire. (a) est le transit primaire, (b) est le transit secondaire.

En juillet 2023, l’imageur MIRIm aura terminé d’effectuer ces cinq observations nécessaires de TRAPPIST-1 b à 12,8 µm. Ce deuxième point de mesure de la température permettra de contraindre d’avantage les modèles atmosphériques et ainsi de confirmer ou non le scénario proposé dans cette première étude.
Et les scientifiques ne comptent pas s’arrêter là ! Plusieurs demandes de temps viennent d’être déposées afin d’observer la courbe de phase (cf. Figure 5), c’est-à-dire suivre la luminosité émise par la planète au cours de sa course autour de son étoile et non plus juste lors de certaines positions (cf. Figure 3). On pourra ainsi mieux suivre l’évolution de la température côté jour et nuit vérifiant l’hypothèse de l’absence d’atmosphère redistribuant la chaleur. Un autre projet est de prendre un spectre de surface de TRAPPIST-1 b via l’instrument LRS de MIRI pour en connaitre sa composition.

La petite sœur TRAPPIST-1 c n’est pas en reste : Quatre éclipses secondaires de la planète ont été observées avec MIRIm à 15 microns. L’article a récemment été accepté et sortira très prochainement ! A suivre au prochain épisode…

« Tout juste un an après son lancement, le JWST nous ouvre déjà les portes des mondes inexplorés. J’ai si hâte de découvrir tout le travail pionnier qu’il va nous permettre d’accomplir dans les années, voire même dans les décennies à venir. J’ai l’impression de presque toucher du doigt une planète rocheuse comme Mercure ou Vénus mais située à presque 40 années-lumière de la Terre. C’est une chance inestimable ! »

S’émerveille Achrène Dyrek, en troisième année de thèse au DAp.