La Supernova iconique SN 1987A sous le projecteur du JWST

Les supernovae sont des corps célestes fondamentaux dans l’évolution de l’univers, mais elles revêtent toujours d’importants mystères comme, par exemple, leur contribution relative à la production de poussières dans l’univers primordial.

La supernova SN 1987A est apparue le 23 février 1987 dans le Grand Nuage de Magellan, à quelques 165000 années-lumière de nous. C’est la première supernova visible en 400 ans, depuis celle de 1604, dite de Kepler, en l’honneur de Johannes Kepler, qui en fut un de ses observateurs les plus assidus, et qui s’est produite, elle, dans notre Galaxie (plus précisément dans la constellation d’Ophiuchus). Née à l’ère des télescopes, SN 1987A a été depuis sa naissance, et est toujours, observée par les moyens les plus modernes dont disposent les astronomes. Elle est devenue à ce titre une véritable icone, sans être vraiment emblématique de sa classe. Rien d’étonnant, donc, à ce qu’elle soit une des premières cibles du Télescope Spatial James Webb, le JWST, dont il n’est plus nécessaire de souligner l’extrême sensitivité et l’excellente résolution angulaire.

Image de SN 1987A et de son environnement, obtenue en 2022 avec le Télescope Spatial Hubble (HST) à travers un filtre centré sur la longueur d’onde de l’hydrogène à 1.08 micron. Les contours indiquent la région d’où provient l’émission d’argon fortement ionisé observée avec le MRS et NIRSpec, qui marque la présence d’un objet compact (voir le dernier paragraphe de cet article). L’étoile indique le centre de l’anneau équatorial (Fransson et al., 2024).

 

Le domaine spectral qui correspond à l’infrarouge est très important: il complète les autres domaines de longueurs d’onde du spectre électromagnétique d’un corps céleste, ce qui est nécessaire pour comprendre les mécanismes physiques qui sont en jeu; de plus, il permet non seulement d’étudier les poussières mais aussi de voir des sources lumineuses qui peuvent être cachées par ces poussières. 

 

 

Si plusieurs observations de supernovae ont été réalisées dans l’infrarouge proche (entre 1 et 5 micron), SN 1987A est la seule supernova à avoir été observée dans l’infrarouge moyen (entre 5 et 30 micron) pour être la seule connue qui soit suffisamment brillante à ces longueurs d’onde. Ces observations ont démarré depuis son apparition, mais c’était alors depuis le sol, avec tous les inconvénients que produit l’atmosphère à ces longueurs d’onde. Tous les instruments du JWST ont magnifiquement pallié ces inconvénients pour donner aux astronomes une nouvelle vision des mécanismes physiques en cours, du cœur de la supernova à son environnement circumstellaire, et jusqu’au milieu interstellaire. 

Une description de l’environnement de SN 1987A ainsi qu’un compte rendu des premières observations effectuées avec le JWST se trouvent ici. Ces observations se sont poursuivies, et des résultats spectaculaires ont été obtenus. Ils sont décrits dans ce qui suit.

 

 

L’Infrarouge Moyen

 

L’Imageur :

 

MIRI, conçu et construit en grande partie par le CEA, sous l’égide du CNES, est l’instrument du JWST qui observe dans l’infrarouge moyen. Sa composante imageur a permis d’élaborer une carte détaillée des températures en jeu, tout en fournissant des données inédites sur la morphologie de ce que les astronomes appellent « les Restes de la Supernova » (Supernova Remnant).  Une attention particulière a été portée sur les poussières : certaines résultent de l’évolution de l’étoile progénitrice (elles sont donc antérieures à l’évènement) et se trouvent en particulier dans les différents anneaux, tandis que d’autres se sont condensées dans les éjecta pendant l’évènement. A l’aide de l’imageur de MIRI, une destruction des poussières dans certaines zones, et une nouvelle condensation de celles-ci dans d’autres ont pu être observées. Les images obtenues montrent que l’onde de choc initiale, véritable moteur du phénomène, a maintenant atteint les régions extérieures du milieu circumstellaire (voir l’article de Bouchet et al.).

Carte des températures calculées avec un modèle standard de la composition des poussières, sur laquelle sont superposés les contours de l’image obtenue à 5,6 micron (le niveau des contours en mJy/pixel est indiqué sur la figure) (Bouchet et al., 2024).

Images obtenue à 5,6, 10, 18 et 25,5 micron avec l’imageur de MIRI (MIRIm), avec les contours de l’image obtenue avec le MRS à 6,985 micron, qui correspond à la longueur d’onde de l’argon doublement ionisé. Les dimensions du faisceau lumineux pour chaque longueur d’onde sont illustrées en bas à gauche de chaque image (Bouchet et al., 2024).

 

La Spectroscopie :

 

Toujours dans l’infrarouge moyen (ou thermique), le spectrographe à moyenne résolution spectrale de MIRI (appelé MRS, pour Medium Resolution Spectrograph) a permis grâce à son excellent pouvoir de séparation spatial de distinguer en détails les éjecta de la supernova, l’anneau équatorial qui les entoure, et le milieu circumstellaire plus lointain. L’anneau équatorial est situé à une distance de 0,7 année-lumière du centre de la supernova, et résulte d’un épisode de l’évolution de son progéniteur il y a quelques 20000 ans. Le milieu circumstellaire plus lointain consiste en particulier en deux anneaux qui formerait un sablier s’il était vu perpendiculairement à son grand axe (voir figure dans l’actualité précitée). Lorsque du gaz en expansion heurte des régions denses, il se refroidit. Les spectres de la lumière émise dans ces différentes régions permettent de mettre en évidence certaines propriétés de ce gaz lorsqu’il rentre en contact avec l’anneau équatorial, et après le choc. Ils ont aussi conduit à l’identification d’éléments chimiques dans les milieux les moins denses, dont la forte ionisation pourrait avoir été produite par la progression d’une succession d’onde de chocs à travers l’anneau, ou par le rayonnement UV associé à l’origine de l’évènement. Le MRS a aussi montré que les grains de poussières les plus petits sont plus facilement détruits que ceux de dimensions supérieures, et a mis en lumière les principaux éléments qui composent les éjecta (voir l’article de Jones et al.)

 

Images des émissions produites par divers éléments chimiques dans l’environnement de SN 1987A obtenues avec le MRS. Les ellipses indiquent la position des anneaux. Les barres colorées indiquent les intensités mesurées en MJy/sr (Jones et al., 2023).

L’Infrarouge Proche

 

L’Imageur :

 

L’extraordinaire résolution angulaire de la caméra NIRCam (Near Infrared Camera) , avec un pouvoir de séparation de 0,05 seconde d’arc dans l’infrarouge proche a permis d’identifier pour la première fois trois régions bien distinctes : (1) de faibles croissants d’hydrogène moléculaire, situés entre les éjecta et l’anneau équatorial, (2) une barre qui est une substructure des éjecta, et (3) une émission continue brillante à l’extérieur de l’anneau. Dans les courtes longueurs d’onde (de 1 à 2,3 micron), les images de NIRCam montrent que le rayonnement provient d’une émission de raies qui révèlent la présence des éléments chimiques qui se trouvent dans les éjecta et dans certaines régions de l’anneau équatorial (que les astronomes appellent les points chauds). Par contre, dans la fenêtre spectrale comprise entre 3 et 5 micron, il s’agit d’une émission continue provenant de poussières dans les éjecta (poussières qui, par ailleurs, pourraient masquer le centre de la supernova), et d’une émission synchrotron dans l’anneau équatorial et son extérieur. Ces observations montrent que le refroidissement et la destruction des poussières sont plus rapides que le refroidissement du rayonnement synchrotron, qui est lui-même plus rapide que la recombinaison de l’hydrogène dans l’anneau. Un sous-produit très important de ces observations réalisées avec NIRCam, est que celles-ci ouvrent une nouvelle fenêtre dans l’étude de l’accélération des particules et de la physique des chocs dans des détails sans précédent, lorsqu’ils sont explorés par l’émission synchrotron dans le proche infrarouge. Ceci permet d’établir une image très précise de la façon dont une supernova évolue (voir l’article de Matsuura et al.).

Image composée à partir de cinq filtres de NIRCam (1,5 et 1.6 micron en bleu ; 2 micron en jaune ; 4 micron en orange; 4,4 micron en rouge). L’intérieur des éjecta est composé essentiellement de fer qui rayonne à 1.6 micron. A l’intérieur des éjecta, on aperçoit une barre alignée approximativement sur la direction Est – Ouest, et 2 croissants apparaissent entre les éjecta et l’anneau équatorial. Des points chauds sont aussi visibles dans l’anneau équatorial délimité par les 2 ellipses, mais on en trouve aussi à l’extérieur de cet anneau. La position des 2 anneaux extérieurs est indiquée par les ellipses en pointillés (Nord vers le haut, Est vers la droite). (Matsuura et al., 2024)

 

La Spectroscopie :

 

Pour clore cette série d’observations, le spectrographe NIRSpec (Near Infrared Spectrograph) a fourni la première spectroscopie spatialement résolue de l’éjecta et de l’anneau équatorial entre 1 et 5 micron. Pour la première fois aussi, des cartes en 3-D des émissions du fer à l’intérieur des éjecta ont pu être construites, ainsi que de celles de l’hélium dans le choc inverse (tout choc qui se propage dans une région dense génère un choc inverse) : la première sonde la géométrie de l’évènement et la seconde trace la composition du milieu circumstellaire. La carte 3-D du fer, prépondérant dans les éjecta, révèle une morphologie fortement asymétrique qui ressemble à un dipôle brisé dominé par deux gros amas animés de vitesses élevées (environ 2300 km/s). Ces observations prouvent également que l’intérieur de ces éjecta a commencé à interagir avec le choc inverse. NIRSpec a observé aussi de très nombreuses raies d’hydrogène moléculaire : celui-ci est très probablement excité par un rayonnement ultraviolet extrême, mais pourrait aussi résulter d’une combinaison de collisions et recombinaisons dans les couches des éjecta de basse température. Enfin, plusieurs raies coronales très fortement ionisées ont été identifiées dans l’anneau équatorial : leur existence requiert une température supérieure à 2 millions de degrés qui serait associée au rayonnement observé dans les hautes énergies, en particulier dans les rayons-X (voir l’article de Larsson et al.)

 

Image obtenue avec NIRSpec dans la région spectrale autour de 1,44 micron : c’est la longueur d’onde du fer que l’on voit dans les ejecta, alors que le fer et l’hydrogène qui sont présents dans l’anneau équatorial rayonnent à 1,427 et 1,460 respectivement. La courbe indiquée en pointillés délimite approximativement la région où le choc inverse est détecté (un seul composant du continuum est présent à cette longueur d’onde). L’anneau équatorial est incliné de 43°, et le Nord est dirigé vers l’observateur (Larsson et al., 2024).

Visualisation 3D de l’hélium présent dans le choc inverse. La position des anneaux extérieurs est indiquée par les ellipses bleu et rouge. L’anneau équatorial est connecté aux anneaux extérieurs par les lignes en pointillés pour aider à la visualisation. (Larsson et al., 2024).

 

Un Mystère Finalement élucidé

 

Finalement, pour couronner magistralement cette moisson de résultats, le JWST a permis d’élucider un mystère de longue date. Les neutrinos sont des particules élémentaires, de masse pratiquement nulle, qui sont engendrées par des réactions nucléaires. Tandis que le Soleil produit des neutrinos de basse énergie, les neutrinos de haute énergie sont produits par des cataclysmes cosmiques extrêmement violents tels que les supernovae. L’implosion d’une supernova génère en effet une émission de neutrinos, puisque lors de l’effondrement gravitationnel du cœur de l’étoile, les électrons fusionnent avec les protons, produisant des neutrons et des neutrinos. Ces neutrinos sont hautement énergétiques (99% de l’énergie émise par les supernovae l’est sous forme de neutrinos) : une telle émission a été observée quelques heures avant l’apparition de l’évènement lumineux visible par les observatoires de Kamiokande II, IMB et Baksan (Kamiokande détecta 11 neutrinos, IMB 8 neutrinos et Baksan 5 neutrinos), le temps d’un éclair qui dura moins de 13 secondes.

 

Les observations de neutrinos constituent une preuve irréfutable que l’évènement a donné naissance à une étoile à neutron (ou à un trou noir), mais où est-elle?

 

Les neutrinos n’interagissant que très faiblement avec la matière, ils sont immédiatement libérés, c’est pourquoi le pic de neutrinos a été détecté 3 heures avant la contrepartie optique. Une étoile à neutrons peut présenter différents aspects : si elle tourne rapidement sur elle-même et qu’elle possède un puissant champ magnétique, elle projette alors le long de son axe magnétique un mince pinceau de radiations, et un observateur placé approximativement dans la direction de cet axe observera une émission pulsée par un effet de phare, appelée pour cette raison pulsar. Par contre, si elle n’est ni associée à un compagnon, ni entourée de matière circumstellaire, ou qu’elle n’a pas développé une émission pulsée, une étoile à neutrons est extrêmement difficile à détecter car seule l’émission thermique de sa surface est éventuellement décelable. De plus une étoile à neutron a un diamètre d’une dizaine de kilomètres seulement (pour une masse d’environ 3 milliard de tonnes !), ce qui en fait un des astres les plus petits de l’univers (hormis les trous noirs).

Très vite, de nombreuses recherches de cet astre résiduel ont été entreprises. Elles se sont toutes avérées négatives, que ce soit par des calculs de bilan énergétiques basés sur les observations, par la quête de pulses en utilisant des techniques de photométrie rapide, ou par de l’imagerie directe à toutes les longueurs d’onde. Pour expliquer ce manque de détection, les astronomes ont émis plusieurs hypothèses : les poussières environnantes masqueraient l’étoile à neutron ; la force du champ magnétique ne serait pas suffisante pour avoir formé un pulsar ; il y aurait bien un pulsar, mais le faisceau énergétique n’est pas dirigé dans notre direction…

Le JWST a enfin levé le voile :  la théorie indiquant que les photons ionisants émis par une étoile à neutron doivent exciter les raies d’émission des éléments lourds qui sont dans l’éjecta, il s’agit donc de rechercher ces émissions. Pour cela, l’équipe qui conduit cette recherche a analysé les données du MRS et de NIRSpec. La présence de raies fortement ionisées a été identifiée grâce à ces deux instruments. Elles sont dues en particulier à la présence d’argon et de souffre, qui sont justement des éléments produits par la combustion nucléaire de l’oxygène et du silicium. Ces raies en émission avaient déjà été détecté mais avec des résolutions (angulaire et spectrale) trop insuffisantes pour permettre de savoir si l’émission provenait des éjecta ou de l’anneau équatorial. Les observations du JWST ont prouvé sans ambigüité possible que l’émission provient d’une source centrale séparée de l’anneau, et qu’il ne s’agit pas d’une lumière diffusée par celui-ci.

Les raies étroites qui ont été observées ne peuvent être excitées que par une source de photons ionisants ou par une onde de choc. Les sources potentielles pourraient être : (1) des photons d’une nébuleuse de vent de pulsar (PWN, pour Pulsar Wind Nebula) générée par une étoile à neutron, (2) des photons qui proviennent directement d’une étoile à neutron qui se refroidit, (3) une accrétion sur un objet compact, ou (4) des chocs dans une nébuleuse de vent de pulsar. D’autres possibilités ont été envisagées, mais ont été écartées pour diverses raisons.

Quoiqu’il en soit, toutes les explications envisageables impliquent la présence d’une jeune étoile à neutron, ou d’un trou noir, au centre des éjectas. L’hypothèse du trou noir a été écartée parce que le progéniteur de SN 1987A avait une masse trop faible (inférieure à 20 masse solaire), tout comme le cœur de fer (qui avait aussi une masse inférieure à 2 masse solaire).

Il s’agit là d’une découverte majeure faite grâce aux observations réalisées par les instruments du JWST (voir l’article de Fransson et al.). Elle a d’ailleurs justifié d’un communiqué de presse émis par la Revue Science, et repris par la NASA et de très nombreux instituts.

Combinaison d’une image du télescope spatial Hubble de SN 1987A et de la source d’argon compacte. La source bleue faible au centre est l’émission de la source compacte détectée avec l’instrument JWST/NIRSpec. Autour de cette source, on aperçoit les débris stellaires, contenant la plupart de la masse, s’étendant à des milliers de km/seconde. La « chaîne de perles » intérieure brillante est le gaz des couches externes de l’étoile qui a été expulsé environ 20 000 ans avant l’évènement final. Les débris rapides entrent maintenant en collision avec l’anneau, ce qui explique les points lumineux.
En dehors de l’anneau intérieur se trouvent deux anneaux extérieurs, vraisemblablement produits par le même processus que celui qui a formé l’anneau intérieur. Les étoiles brillantes à la droite et à la droite de l’anneau intérieur ne sont pas liées à la supernova.

Note : il est coutume, dans l’immense majorité des articles traitant de supernovae, d’utiliser le terme “explosion” pour marquer l’évènement. Ce terme est impropre et prête à une grave confusion. Le mécanisme en jeu dans une supernova comme SN 1987A (dite de Type II), est le résultat d’un effondrement des couches extérieures sur le cœur de l’étoile, puis le collapse du cœur sur lui-même (composé essentiellement de fer). La matière qui s’effondre rebondit alors sur ce noyau dur. Elle est alors expulsée par une puissante onde de choc. C’est ce qui produit le phénomène observé. Il ne s’agit donc en aucun cas d’une “explosion”, puisqu’il s’agit d’une “implosion” initiale. Par contre, une supernova de Type Ia résulte d’une explosion d’une étoile dans un système multiple.

La contribution française au JWST

Le télescope Spatial a été lancé par une fusée Ariane 5 ECA depuis la Centre Spatial de Kourou en Guyane le 25 décembre 2021 à 13h20 (heure de Paris). L’observatoire a atteint son orbite autour de L2 le 24 janvier 2022 à 20h04, après que tous ses composants se sont déployés d’une manière parfaite (écran solaire, miroir secondaire, déploiement des segments du miroir primaire…). Les étapes suivantes consistaient à aligner chaque segment qui compose le miroir primaire de manière à obtenir une seule image au foyer du télescope, puis à attendre que les températures permettent aux divers instruments de fonctionner, pendant que les experts opticiens “alignaient” au plus fin tous les segments du miroir primaire. La dernière étape était la “Recette en vol” (ou “Commissioning”), consistant à s’assurer du parfait fonctionnement de tout l’observatoire et des quatre instruments à bord. Toutes ces étapes ont été franchies avec un succès extraordinaire et le 12 juillet 2022, nous avons pu enfin visualiser les images à couper le souffle du Télescope James Webb. Une nouvelle vision de l’Univers s’ouvre à nous avec de nombreuses découvertes à la clé ! Ce site officiel français a l’intention de vous les faire découvrir.

 

Le James Webb Space Télescope (JWST) est un observatoire spatiale qui observe l’univers dans l’infrarouge. Il a été développé par la NASA en coopération avec l’Agence Spatiale Européenne (ESA) et l’Agence Spatiale Canadienne (ASC). La France est présente dans l’aventure du JWST, notamment à travers sa participation au développement de l’instrument MIRI, l’un des 4 instruments à bord du satellite. Pour l’exploitation scientifique de ce fabuleux télescope spatial, la communauté française des astrophysiciens s’appuye sur le Centre d’Expertise (MICE) qui a été mis en place au Département d’Astrophysique du CEA, à Saclay, avec la collaboration de l’Institut d’Astrophysique Spatial (IAS), du LESIA de l’Observatoire de Paris et du Laboratoire d’Astrophysique de Marseille (LAM).

 

Le James Webb Space Telescope (JWST) est la mission phare des années 2020 – 2040 pour faire avancer la connaissance dans de nombreux domaines de l’astrophysique. Quatre thèmes ont été mis en avant :

    -1) Première lumière et ré-ionisation de l’Univers à la sortie de la période dite ‘âge sombre’ période qui se situe environ 300-400 millions d’années après le big bang et qui est vierge de toute observation,
    -2) Assemblage des galaxies,
    -3) Naissance des étoiles et des systèmes protoplanétaires,
    -4) Planètes et origine de la vie.

Suite à sa forte implication dans le consortium qui a construit l’instrument MIRI (Mid InfraRed Instrument) du JWST, l’équipe française a accès à du temps d’observation garanti (GTO). Le consortium européen dispose de 450 heures de temps garanti. Le département d’astrophysique du CEA (DAp) et l’UMR AIM du CNRS qui lui est associée, coordonnent le programme d’étude des exoplanètes (caractérisation de leur atmosphère; 110 heures), et l’étude de la Supernova SN 1987A.

Pour permettre à la communauté scientifique d’avoir très tôt des données d’observations afin de préparer la réponse aux appels à proposition d’observations en temps ouvert, le directeur du STScI a décidé que 500 heures de temps discrétionnaire à sa disposition seraient consacrées à des programmes intitulés ‘Early Release Science’ (ERS). Les observations seront faites dans les 5 premiers mois d’observations du JWST. Les données seront immédiatement publiques. Suite à un appel d’offre, treize programmes ont été sélectionnés. La France est très fortement impliquée dans les 2 programmes dédiés aux exoplanètes.-

 

L’instrument MIRI est le seul des quatre instruments qui opère dans le domaine de l’infrarouge dit « thermique ». Observant dans les longueurs d’onde entre 5 et 28 micromètres, il sera le plus à même pour observer le gaz et les poussières dans des objets beaucoup plus froids que des étoiles comme notre Soleil. Il permettra par exemple de voir des étoiles jeunes encore profondément enfouies dans le nuage de gaz et de poussières dans lequel elles se forment. MIRI sera également le complément indispensable à NIRCam pour identifier les premières galaxies de l’Univers. L’instrument MIRI est réalisé par un consortium de laboratoires européens coordonnés par Gillian Wright de l’Observatoire Royal d’Edimbourg et par le centre NASA JPL qui fournit les détecteurs et leur électronique, ainsi que le système de refroidissement spécial à l’instrument. Dix pays européens ont participé à la réalisation de MIRI (UK, France, Belgique, Pays-Bas, Allemagne, Espagne, Suisse, Suède, Danemark, Irlande.

 

La France, sous l’égide du CNES, garant vis à vis de l’ESA de la contribution nationale et responsable formel de la contribution française a largement contribué à l’instrument MIRI. En effet, la France a été en charge de la conception, de la réalisation, des tests et de la livraison de l’imageur MIRIm (hors détecteur fourni par la NASA). Cette contribution a été réalisée sous la maîtrise d’œuvre du CEA ; trois autres laboratoires français ont participé à MIRIm :
– le LESIA (Meudon) : Coronographes.
– l’IAS (Orsay) : Conception du simulateur de télescope,
– et le LAM (Marseille) : Réalisation des essais en vibration.

D’autres pays européens ont contribué à MIRIM :
– la Belgique – Centre Spatial de Liège : Réalisation des miroirs,
– l’Allemagne – Max Planck Institute : Fourniture du mécanisme de la roue à filtre,
– La Suède – University of Sweden et l’Irlande: Réalisation des filtres optiques.

 

 

La livraison du modèle de vol de MIRIM par le CEA a eu lieu en 2012, soit 9 ans avant le lancement fin 2021. L’imageur MIRIM propose trois modes d’observation: «imagerie» pour photographier le ciel, «spectrographie» pour décomposer la lumière et y trouver la signature d’éléments et de molécules cosmiques, et «coronographie» pour éteindre la lumière d’une source très lumineuse, que ce soit une étoile (recherche d’exoplanètes) ou un noyau de galaxie, pour mieux observer son voisinage.

 

Un concept optique original comprend un banc optique à 5 miroirs (aluminium, usinage diamant), une roue à filtres permettant de choisir entre différents traitements de la lumière reçues par le Télescope et une fenêtre d’entrée supportant la fente du spectrographe ainsi qu’un masque (Lyot) et 3 filtres à 4 quadrants pour la fonction coronographie dite à Masque de Phase.

 

Le modèle de vol de l’imageur MIRIM a été assemblé et testé au CEA Paris-Saclay en 2008 et 2009 ; un banc de test qui permet de reproduire les conditions de vide et de froid que rencontre MIRIM dans l’espace a été développé spécialement pour l’occasion. En 2010, MIRIM a été livré au Rutherford Appleton Laboratory en Angleterre pour être couplé avec l’autre partie de MIRI, le spectromètre MRS, puis testé dans une chambre à vide suffisamment grande pour l’instrument complet. En 2012, MIRI a été envoyé au Goddard Space Center de la NASA (GSFC), près de Washington, où il a été couplé avec les trois autres instruments du JWST. Trois séries de tests cryogéniques ont suivi entre 2012 et 2016. Les 18 hexagones du miroir primaire du télescope ont aussi été assemblés au Goddard Space Center (NGSFC) de novembre 2015 à février 2016. Les instruments ont été montés à l’arrière du miroir primaire du télescope et l’ensemble a été envoyé en 2017 à Houston pour être testé, car la station de test au NGSFC n’était pas assez grande pour accueillir le télescope. L’équipe CEA était sur place pour les tests au moment où l’ouragan Harvey s’est abattu. Plus de peur que de mal; juste quelques nuits au laboratoire sans pouvoir regagner l’hôtel et une voiture complètement noyée!

 

Une fois les tests finis, nous avons «lâché» MIRI pour son voyage dans les locaux de la compagnie Northrop Grumman, en Californie, où il est arrivé début 2018. Là, le télescope a été couplé avec le satellite et les grands écrans thermiques (parasol), qui vont empêcher les rayons du Soleil, de la Terre et de la Lune d’atteindre le télescope. Celui-ci pourra alors atteindre passivement une température d’environ 45K (-228℃), nécessaire pour ne pas gêner les observations dans l’infrarouge.

 

Enfin, fin septembre 2021, le JWST a quitté la Californie pour Kourou où il est arrivé après un voyage en bateau de 16 jours qui l’a amené à passer par le canal de Panama (bloqué quelques mois plus tôt!).

 

 

Après un lancement réalisé bien au delà des espérances (grâce à l’action du CNES, aux performances d’Ariane 5, et la maîtrise des agents à Kourou), les tests des performances de MIRI sur le ciel se sont extraordinairement bien déroulés. Sur la figure ci-dessous on peut voir le gain en résolution angulaire et en sensibilité apporté par MIRI par rapport à son prédécesseur.

 

Une petite partie du temps d’observation est réservée aux astrophysiciens ayant participé au développement instrumental (450 heures pour le consortium européen MIRI). Dans ce cadre, l’équipe du CEA coordonne les observations qui seront consacrées aux exoplanètes, et à la Supernova 1987A.

L’essentiel du temps d’observation sera « ouvert » : chaque année durant les 10 à 15 années de durée de vie du JWST, un appel pour l’utilisation de l’observatoire est programmé. Le premier appel a eu lieu en 2020. Plus de 1000 demandes ont été déposées, impliquant plus de 4000 astrophysiciens à travers le monde. Le nombre d’heures d’observation demandées est très supérieur (4 à 5 fois) au nombre d’heures disponibles et la sélection a été faite par des comités de scientifiques. Il est satisfaisant de voir que MIRI est le deuxième instrument le plus demandé.  Ses promoteurs (en France, Pierre-Olivier Lagage) ont bien fait d’insister pour qu’il « monte » à bord du Webb !
En effet, cet instrument n’était pas initialement prévu pour être incorporé dans le JWST. C’est grâce à l’action soutenue d’un consortium Européen qu’il a finalement été accepté comme le quatrième dans la panoplie qu’offre maintenant le JWST.

SpaceBus France

Événements Grand Public

L’association SpaceBus France

SpaceBus France

Chaque été, l’association SpaceBus France et ses bénévoles professionnels de l’astronomie parcourent une région différente de France s’arrêtant de ville en ville, sur les places publiques, pour aller à la rencontre des vacanciers et des locaux et leur faire découvrir l’astronomie et l’espace.

Pour sa troisième édition, SpaceBus France a parcouru les côtes de la Manche, de Rennes à Val de Reuil, du 19 juillet au 13 août 2021.

 

 

 

Une dizaine d’animations ont déjà été proposées aux petits et aux grands pour expliquer les mystères de l’Univers, du système solaire à la cosmologie. Il est également proposé une
animation en réalité augmentée sur le futur télescope spatiale JWST, le système solaire et
deux système exoplanétaires. Cette application interactive permet d’apprendre de manière ludique.  

 

Elle a été développé en collaboration entre le CEA et l’association SpaceBus France,
et elle est téléchargeable via ce lien :

Le trajet

        ☾ 20 JUILLET : Saint Jacut de la Mer : Pointe du Chevet
        ☾ 22 JUILLET : Saint Lunaire :  Esplanade du minigolf (Grande Plage)
        ☾ 25 JUILLET : Granville : Square de l’Arsenal, contre le parking de l’aquarium
        ☾ 29 JUILLET : Port en Bessin – Huppain : Place Georges Seurat
        ☾ 31 JUILLET : Courseulles sur mer : Place Charles de Gaulle
        ☾ 1 AOÛT : Ouistreham : Place A. Lofi (à l’entrée de la plage)
        ☾ 3 AOÛT :  Houlgate : Parc André Fauvel, avenue de l’Europe
        ☾ 7 AOÛT : Le Havre : Esplanade devant le Muséum d’Histoire Naturelle
        ☾ 9 AOÛT : Fécamp : Front de mer, digue promenade, boulevard Albert 1er
        ☾ 10 AOÛT : Dieppe : Pelouse Pinsdez (pelouse du front de mer)
        ☾ 12 AOÛT : Neufchâtel en Bray :  La Chapelle Sainte Radegonde , boulevard de l’Europe
        ☾ 13 AOÛT : Val de Reuil : Maison de la Jeunesse et des Associations’

JWST