Première image de MIRI avec les autres instruments

Il y a quelques jours MIRI, l’instrument à forte connotation française obtenait les premières images du ciel dans la gamme de longueurs d’onde correspondant à l’infrarouge thermique. Elles sont époustouflantes, surtout compte tenu du fait que l’alignement optique fin n’est pas encore terminé et que les calibrations ne sont pas encore réalisées. La NASA vient de publier à travers son blog tous les tenants et aboutissements de cette fantastique réussite. https://blogs.nasa.gov/webb/

Le Centre d’Expertise MICE, moteur de notre site, était non seulement présent sur place mais participant essentiel de ces premières observations. Plusieurs de ses membres étaient en effet dans la salle du MOC (Mission Operations Center) à Baltimore lorsque ces premières images ont été acquises.

C’est pourquoi, il nous a semblé beaucoup plus intéressant de publier leurs réactions, plutôt que de traduire un communiqué de la NASA. C’est aussi une manière de souligner l’importance de la participation française dans cette aventure extraordinaire.

Il reste que tous les instruments scientifiques embarqués à bord du JWST sont maintenant totalement opérationnels, ce qui est non seulement un succès phénoménal, mais aussi l’annonce d’observations à venir qui vont certainement révolutionner l’astrophysique.

 

Voici le résumé de cette journée historique pour tous ceux qui ont œuvré à faire de MIRI l’instrument dont nous apprécions maintenant les prouesses, tel que raconté par Christophe Cossou, membre de MICE qui était à la console du MOC.

 

« C'est l'une des expériences les plus incroyables de ma vie. Après des années de préparation, après des semaines de travail suite au lancement, il y a un sentiment de devoir accompli même s'il reste tant à faire. Ce shift était incroyable. La tension qui devient palpable, l'attente des gens. Plusieurs personnes viennent me voir et demandent à être prévenu quand on aura les premières images. La personne à coté de moi a un masque anti covid avec marqué dessus d'un coté "le cooler est stable" et de l'autre "MIRI CCC va bientôt s'ouvrir". On se prépare, on vérifie les valeurs, on valide et on commande l'ouverture du CCC, le couvercle qui sépare MIRI du reste de l'univers. Ça y est, MIRI peut voir le ciel. Des gens demandent "vous observez là?" Oui, on observe, on voit progresser l'acquisition, lentement, trop lentement. Encore 36 minutes et on aura fini la première image, avec cette épée de damoclès au dessus de nos têtes, est-ce qu'il va y avoir un soucis? Comment vont être les images? Ça y est, l'observation est terminée, maintenant il faut attendre qu'elle soit envoyée au sol, puis traitée. Attente insoutenable. Les gens repassent, pour être sûr de ne rien manquer. Pour pimenter les choses, compétition entre nous pour savoir qui sera le premier à récupérer les données. Rien à gagner, juste ce coté enfantin qui se rajoute à l'aspect hautement technique et factuel de notre mission. Mais on est trop impatients, on ne peut pas attendre les données réduites que déjà on regarde les données brutes, normalement assez peu parlantes. C'est comme regarder un négatif parce qu'on n'a pas la patience d'attendre la fin du développement. Les images sont déjà prometteuses, et puis la sentence arrive, on a enfin les toutes premières données. Et puis tout se précipite et je perds la notion du temps. On regarde les images et elles sont incroyables. On voit les PSFs, on dirait des simulations. On remarque quelque chose dans le coin en haut à droite, peut-être une nébuleuse, peut-être un artefact dans l'image dû au fait qu'on est encore au tout début de la Recette en Vol (Commissioning) et on n'a pas encore tous les fichiers de calibration. Le responsable de l'instrument me dit dans notre communication interne que je peux proposer aux autres consoles de regarder les images. Ce à quoi je lui réponds: Pas besoin, ils sont déjà tous derrière moi. Les rires éclatent dans la salle car ils n'ont pas entendu ce qu'on m'a dit, mais ils ont très bien compris vu ce que j'ai répondu. Attirés par la lumière, ils sont tous venus voir la première image de MIRI. La salle et moi-même perdons un peu de notre concentration dans ce moment d'euphorie. Ce n'est qu'à la 3e fois que j'entends l'invitation dans l'oreillette à venir dans la salle principale avec mon ordinateur pour projeter la première image de MIRI sur le grand écran. Et ensuite je me retrouve avec le micro principal pour parler à tout le monde et décrire l'image. Je peine à trouver mes mots, je regarde encore. Ça fait déjà 10 minutes que je n'arrive pas à détourner les yeux de l'image de source ponctuelle qui est d'une extrême qualité alors que c'est une toute première image non encore complètement calibrée. Et puis la fin du shift arrive, je reste encore et on compare les images. L'artefact remarqué initialement bouge sur les différentes observations, preuve que c'est bien quelque chose du ciel et non un défaut du détecteur. Petit à petit, je range mes affaires, on explique à la relève les activités pour le prochain shift et je me dirige vers la sortie. Je laisse un message à ma compagne que je n'ai pas vue depuis plus d'un mois pour lui raconter brièvement ce qu'il vient de se passer, elle le verra le lendemain à son réveil. Et j'écris ensuite ces lignes avant de me coucher, afin d'avoir une trace, de ne pas prendre le risque de voir tout cela altéré par ma mémoire fuyante. Je veux me souvenir des moindres détails de cet instant pour le restant de mes jours. »
Designer

Pour plus d’information, voire le site dédié du CEA , avec une vidéo instructive.

L’image suivante illustre magistralement l’avancée du JWST en terme de résolution angulaire. Nul besoin de légende, les images parlent d’elles-même..

 

Crédit NASA/ Andras Gaspar,  Université d’Arizona

MIRI : SA DESCENTE ACCELEREE VERS LE GRAND FROID ! (actualité à jour jusqu’au 19 avril 2022)

La température est essentiellement une mesure de la vitesse à laquelle les atomes se déplacent, et en plus de détecter leur propre lumière infrarouge, les détecteurs du JWST peuvent réagir à leurs propres vibrations thermiques. MIRI détecte la lumière dans une plage d’énergie inférieure à celle des trois autres instruments. Par conséquent, ses détecteurs sont encore plus sensibles aux vibrations thermiques. Ces signaux indésirables sont ce que les astronomes appellent le « bruit », qui peuvent rendre invisibles les faibles signaux que le JWST essaie de détecter.

Nous avons déjà vu qu’après le lancement, l’observatoire a déplié un pare-soleil de la taille d’un court de tennis pour bloquer MIRI et les autres instruments de la chaleur du soleil, leur permettant de se refroidir passivement. Il était prévu qu’environ 77 jours après le lancement, le Cryo refroidisseur de MIRI devait entrer en fonction pour faire baisser la température des détecteurs à moins de 7 kelvins (- 266 °C). Cette phase vient de démarrer et devrait durer environ 19 jours.

Courbes reproduisant les calculs théoriques de prédiction de l’évolution des températures, à comparer avec le graphique des températures mesurées, mis à jour quotidiennement par nos soins sur la page d’accueil du site (et partiellement reproduit sur l’image suivante). Crédit: NASA, JPL

« Il est relativement facile de refroidir quelque chose à cette température sur Terre, généralement pour des applications scientifiques ou industrielles, mais ces systèmes terrestres sont très volumineux et inefficaces sur le plan énergétique. Pour un observatoire spatial, nous avons besoin d’un refroidisseur qui est physiquement compact, très éco-énergétique, et il doit être très fiable parce que nous ne pouvons pas aller le réparer. Voilà donc les défis que nous avons dû relever, et à cet égard, je dirais que le cryo refroidisseur de MIRI est certainement à la fine pointe de la technologie » a déclaré Konstantin Penanen, spécialiste des cryo refroidisseurs au Jet Propulsion Laboratory de la NASA (JPL, Pasadena, dans le sud de la Californie), qui gère l’instrument MIRI pour la NASA.

Le cryo refroidisseur de MIRI utilise de l’hélium gazeux – suffisamment pour remplir environ neuf ballons de foire. Deux compresseurs à alimentation électrique pompent l’hélium à travers un tube qui s’étend jusqu’à l’emplacement des détecteurs. Le tube passe à travers un bloc de métal qui est également attaché aux détecteurs; l’hélium refroidi absorbe l’excès de chaleur du bloc de métal, qui à son tour maintient les détecteurs à leur température de fonctionnement en dessous de 7 kelvins. Le gaz réchauffé (mais encore assez froid) retourne ensuite dans les compresseurs, où il décharge l’excès de chaleur, et le cycle recommence. Fondamentalement, le système est similaire à ceux utilisés dans les réfrigérateurs et les climatiseurs domestiques.

L’ensemble compresseur de cryorefroidissement. Cette photo montre le cryorefroidisseur de vol installé « à l’envers » dans une chambre à vide pour essai, avant qu’elle ne soit fermée. Image : NASA/JPL-Caltech

Le tube qui transporte l’hélium est fait d’acier inoxydable doré et mesure moins de 2,5 millimètres de diamètre. Il s’étend sur environ 10 mètres à partir des compresseurs, situés dans une région appelée le bus de vaisseau spatial, jusqu’aux détecteurs de MIRI, situés dans l’élément de télescope optique (OTE), derrière le miroir primaire du télescope. La tour déployable, ou ATD, relie ces deux régions (voir l’actualité du 30 décembre 2021).

Pour mémoire, rappelons qu’en regardant à travers des nuages de poussière encore plus épais que les instruments qui observent dans l’infrarouge proche peuvent traverser, MIRI révélera les lieux de naissance des étoiles. Il détectera également les molécules qui sont communes sur Terre – comme l’eau, le dioxyde de carbone et le méthane, et celles des minéraux rocheux comme les silicates – dans des environnements froids autour des étoiles voisines, où des planètes peuvent se former. Les instruments dans le proche infrarouge détectent mieux ces molécules sous forme de vapeur dans des environnements beaucoup plus chauds, tandis que MIRI peut les voir sous forme de glaces.

D’autre part, l’un des grands objectifs scientifiques du JWST sera d’étudier les propriétés de la première génération d’étoiles qui se sont formées dans l’univers. La caméra infrarouge proche, l’instrument de NIRCam, sera en mesure de détecter ces objets extrêmement éloignés, mais ce sera le rôle de MIRI d’aider les scientifiques à confirmer que ces faibles sources de lumière sont des amas d’étoiles de première génération, plutôt que des étoiles de seconde génération qui se forment plus tard lors de l’évolution de la galaxie à laquelle elles appartiennent.



Température des instruments mise à jour le 19 avril 2022 à 10 h. La température de fonctionnement optimal de MIRI est au niveau attendu et maintenant stable.  Un très léger retard par rapport à la planification, de légers ajustements ayant été rendus nécessaires, pour s’assurer du bon fonctionnement de tous les systèmes, et les premières images (pour calibrations) sont attendues sous peu. Il reste que c’est une réussite fantastique qui nous laisse augurer du meilleur.

Les instruments qui observeront dans l’infrarouge proche (NIRCam, NIRSpec, FGS-NIRISS) avaient déjà atteint leur cible de 34 à 39 kelvins en se refroidissant passivement depuis plusieurs semaines. MIRI est équipé de détecteurs qui doivent être à une température de moins de 7 kelvins pour pouvoir détecter des photons de longueur d’onde plus longue. Il n’était pas possible d’atteindre cette température par des moyens passifs seuls, d’où la nécessité d’un  cryorefroidisseur innovant décrit plus haut. A noter que pour gérer le processus de refroidissement, MIRI disposait également de « radiateurs » à bord, afin de protéger ses composants sensibles contre le risque de formation de glace.

Attention, bien que le nom puisse porter à confusion, il s’agit de dissipateurs de rayonnement thermique. En fait des « Radiateurs à l’envers » (Françoise Plenat). Ces systèmes ont parfaitement fonctionné, et ces « radiateurs » ont été complètement éteints le 6 avril, pour amener l’instrument à sa température de fonctionnement de moins de 7 kelvins (-266 degrés Celsius). Tout s’est déroulé parfaitement, et les premières images du Ciel vu à travers MIRI ne devraient pas tarder à arriver.


Un nouveau radiotélescope géant pour communiquer avec les missions dans l’espace lointain

Dans le cadre d’un projet en cours visant à accroître la capacité du DSN (Deep Space Network, qui est le réseau spatial pour les communications à de grandes distances), qui agit comme une sorte de standard interplanétaire, la nouvelle antenne est la 14ème du réseau de la NASA qui permettra aux ingénieurs et aux scientifiques de communiquer depuis la Terre avec le nombre croissant de vaisseaux spatiaux explorant notre système solaire et l’univers lointain, comme le JWST par exemple!

L’antenne DSS-53 de la NASA est entrée en service en février 2022 à l’installation de Madrid du Deep Space Network. L’ajout s’inscrit dans le cadre des efforts déployés par l’organisme pour accroître la capacité du réseau, qui appuie environ 40 missions et qui devrait en soutenir 40 autres qui seront lancées au cours des prochaines années. (Crédits : NASA/JPL-Caltech)

Appelée Deep Space Station 53, ou DSS-53, cette nouvelle antenne de 34 mètres de diamètre est maintenant opérationnelle dans les installations du réseau à l’extérieur de Madrid, l’une des trois stations terrestres de ce genre dans le monde. La station de Madrid est gérée pour le compte de la NASA par l’Instituto Nacional de Técnica Aeroespacial (Institut national de technologie aérospatiale) d’Espagne. Pour marquer les débuts de l’antenne, le roi d’Espagne Felipe VI a assisté à la cérémonie d’inauguration le 16 mars aux côtés de responsables de la NASA et de dignitaires espagnols et américains.

Des responsables de la NASA et des dignitaires espagnols et américains flanquent le roi Felipe VI d’Espagne à l’inauguration de l’antenne DSS-53 du DSN. Kathy Lueders, administratrice associée de la Direction des opérations spatiales, et Badri Younes, administratrice adjointe associée de SCaN, ont dirigé la délégation de la NASA.
(Source : NASA)

« La NASA est honorée et fière que le roi reconnaisse cette étape importante en se joignant à nous à la station de Madrid. Son inauguration de l’antenne 53 du Réseau Spatial lointain met en évidence la collaboration critique et historique entre le Royaume d’Espagne et les États-Unis qui, grâce à ce Réseau, continuera à permettre à l’humanité d’explorer les cieux pendant de nombreuses années »  a déclaré Badri A. Younes, administrateur délégué adjoint pour les communications et la navigation spatiales (SCaN) au siège de la NASA à Washington.

Géré par le Jet Propulsion Laboratory de la NASA en Californie du Sud (JPL, Pasadena) pour SCaN, le DSN permet aux missions de suivre, d’envoyer des commandes et de recevoir des données scientifiques de vaisseaux lointains, dont le JWST. Maintenant, avec 14 antennes opérationnelles, le réseau soutient environ 40 missions et devrait en soutenir 40 autres qui seront lancées dans les années à venir.

Avec autant de missions à soutenir actuellement et à l’avenir, la NASA a commencé un projet d’expansion du DSN il y a plus d’une décennie. DSS-53 est la quatrième des six nouvelles antennes de guidage que l’agence ajoute au réseau. Lorsque le projet sera terminé, chaque station au sol – Madrid, ainsi qu’une station à Canberra, en Australie, et l’installation de Goldstone près de Barstow, en Californie – disposera d’un total de quatre antennes de ce type. Les trois stations au sol du DSN sont réparties presque uniformément autour du globe, de sorte que le réseau ne perd jamais de vue les missions lorsque la Terre tourne.

Ensemble, les nouvelles antennes peuvent servir de support ou d’appui aux antennes de 70 mètres de diamètre qui sont sur chaque site. Elles signifient également une capacité accrue à recevoir des informations sur Terre – comme celles provenant du JWST, mais aussi, par exemple, comme des images de la mystérieuse Psyché que la mission du même nom acquerra, ou des données de la prochaine mission Europa Clipper révélant si la lune glacée de Jupiter a la capacité de supporter la vie telle que nous la connaissons.

D’après le communiqué de presse de la NASA 2022-034 publié le 16 mars, 2022

Gaia prend une photo du JWST autour de L2

Pierre Angulaire de l’Agence Spatiale Européenne (ESA), Gaia est un ambitieux projet d’étude de notre Galaxie. Le satellite a été lancé depuis Kourou, par une fusée Soyouz-Fregat le 19 décembre 2013 et devrait continuer sa mission au moins jusqu’à la fin 2022. Sa vocation première est le recensement de plus d’un milliard d’étoiles de la Voie Lactée et la mesure de leurs positions, distances, mouvements et propriétés physiques avec une précision inégalée. En combinant données astrométriques, photométriques et spectroscopiques, Gaia apporte une moisson inédite d’informations sur notre Galaxie permettant ainsi une étude détaillée de sa structure en trois dimensions, de sa cinématique, de son origine et de son évolution. Gaia recense et mesure également un très grand nombre de naines brunes, de planètes extrasolaires, d’astéroïdes, en particulier des géocroiseurs, de supernovae et de galaxies, et apporte une contribution majeure à la détermination de l’échelle des distances extragalactiques ainsi qu’à la physique fondamentale (pour plus de détails et d’informations sur Gaia voir le site de l’observatoire de Paris).

Pourquoi mentionner Gaia sur le site du JWST ? Tout simplement parce que ce satellite nous en a récemment fourni la première « image ».  Scientifiquement parlant, cela n’a guère d’intérêt, mais cette image prouve (s’il fallait éviter les « fake News» !) que le JWST non seulement est réel, mais il est bien là où on l’attend !

Revenons à la source : quelques semaines avant l’arrivée du JWST autour de L2, deux experts de Gaia (Uli Bastian de l’Université de Heidelberg (Allemagne) et François Mignard de l’Observatoire de Nice (France)) réalisèrent que pendant le balayage continu du ciel par Gaia, son nouveau voisin à L2 devrait occasionnellement traverser les champs de vision de Gaia.

Trajectoire du JWST (en bleu) croisant celle de Gaia (en jaune). Crédit ESA

Gaia n’est pas conçu pour prendre de vraies photos d’objets célestes. Au lieu de cela, il recueille des mesures très précises de leurs positions, mouvements, distances et couleurs. Cependant, une partie des instruments à bord prend une sorte d’image du ciel. C’est le « finder scope » de Gaia, aussi appelé le mappeur du ciel (anglicisme reconnu par notre Académie, dérivé de « mapper » c.à.d. établir une carte mémoire, une correspondance entre deux objets) : toutes les six heures, ce cartographe du ciel balaye une étroite bande de 360 degrés autour de toute la sphère céleste. Les bandes successives sont légèrement inclinées les unes par rapport aux autres, de sorte que tous les quelques mois le ciel entier est couvert – touchant tout ce qui est assez brillant pour être vu par Gaia. En quelques secondes, ces coupes sont automatiquement scrutées à la recherche d’images d’étoiles, dont les positions sont ensuite utilisées pour prédire quand et où ces étoiles pourraient être enregistrées dans les principaux instruments scientifiques de Gaia. Ensuite, ils sont systématiquement supprimés.

Mais l’ordinateur peut être commandé pour garder exceptionnellement une partie des données de l’image. Le mappeur de ciel a été initialement prévu à des fins d’entretien technique, mais au cours de la mission, il a également trouvé quelques utilisations scientifiques. Pourquoi, se sont demandé Uli Bastian et François Mignard ne pas l’utiliser pour un instantané du JWST ?

Après que le JWST ait atteint sa destination autour de L2, ils ont calculé quand la première occasion se présenterait pour Gaia de le repérer, qui s’est avéré être le 18 février 2022. A cette date, les deux véhicules spatiaux étaient distants d’un million de kilomètres, avec une vue de Gaia vers l’énorme pare-soleil du JWST. Très peu de lumière réfléchie du soleil vint sur le chemin de Gaïa, et le JWST apparaît donc comme une minuscule tache de lumière dans les deux télescopes de Gaïa, bien évidemment sans aucun détail visible.

Après que les deux télescopes de Gaia aient balayé la partie du ciel où le JWST serait visible, les données brutes ont été téléchargées sur Terre. Le lendemain matin, François a envoyé un courriel à toutes les personnes concernées. L’objet enthousiaste du courriel était « JWST : on l’a eu ! »

Image du JWST prise par Gaia (regarder le zoom!)(Credit : ESA). 

Les deux astronomes ont dû attendre encore quelques jours pour que Juanma Martin-Fleitas, l’ingénieur chargé de l’étalonnage de Gaia à l’ESA, identifie le JWST : « J’ai identifié notre cible » était le message envoyé par lui, avec les images jointes et les deux minuscules taches étiquetées comme « candidats JWST ». Ce à quoi Uli a répondu, après les avoir attentivement examiné : « Vos » candidats » peuvent être renommés JWST en toute sécurité.   

Gaia a maintenant un ami vaisseau spatial autour de L2, et vont ensemble découvrir notre Voie Lactée et l’Univers au-delà.

Une animation illustrant cette amusante expérience peut être vue ici.

Bien que le but de cette image était de se concentrer sur l’étoile brillante du centre pour évaluer l’alignement du télescope, les systèmes optiques du JWST et de NIRCam sont si sensibles que l’on peut voir les galaxies et les étoiles en arrière-plan. À ce stade de l’alignement des miroirs de Webb, connu sous le nom de "phase fine", chacun des segments du miroir primaire a été ajusté pour produire une image unifiée de la même étoile en utilisant uniquement l’instrument NIRCam. Cette image de l’étoile, appelée 2MASS J17554042+6551277, utilise un filtre rouge pour optimiser le contraste visuel. Credits : NASA/STScI

Une nouvelle étape de franchie : l’optique du JWST fonctionne avec succès

C’est une nouvelle fabuleuse! Les étapes critiques d’alignement des miroirs, montrent que les performances optiques du JWST peuvent atteindre, voire dépasser, les objectifs scientifiques pour lesquels l’observatoire a été construit. Comme le confie Pierre-Olivier Lagage, responsable scientifique pour la France et co-Principal Investigateur de MIRI:

« Nous pouvons maintenant y croire! Il y avait deux étapes importantes dans cette aventure: le lancement et l’alignement des segments et de l’optique en général. Tout s’est merveilleusement déroulé, et nous savons maintenant que la moisson scientifique va être exceptionnelle, au-delà même de nos espérances! »

En effet, le 11 mars, la première étape de l’alignement fin des 18 segments qui composent le miroir primaire s’est terminée. C’était une étape clé pour la mise en service du télescope : chaque paramètre optique a été consciencieusement examiné et testé et l’ensemble fonctionne selon, voire au-dessus des attentes. Aucun problème critique n’a été détecté, que ce soit en matière de contamination mesurable ou d’un éventuel blocage dans le trajet optique. L’observatoire sera en mesure de recueillir avec succès la lumière des objets distants et de l’envoyer aux instruments sans aucun problème.

Bien que le but de cette image était de se concentrer sur l’étoile brillante du centre pour évaluer l’alignement du télescope, les systèmes optiques du JWST et de NIRCam sont si sensibles que l’on peut voir les galaxies et les étoiles en arrière-plan. À ce stade de l’alignement des miroirs de Webb, connu sous le nom de "phase fine", chacun des segments du miroir primaire a été ajusté pour produire une image unifiée de la même étoile en utilisant uniquement l’instrument NIRCam. Cette image de l’étoile, appelée 2MASS J17554042+6551277, utilise un filtre rouge pour optimiser le contraste visuel. Credits : NASA/STScI
Ce nouveau « selfie » a été créé à l’aide d’une lentille d’imagerie pupillaire spéciale à l’intérieur de l’instrument de NIRCam qui a été conçue pour prendre des images des segments du miroir primaire plutôt que des images du ciel. Cette configuration n’est pas utilisée pendant les opérations scientifiques et est utilisée strictement à des fins d’ingénierie et d’alignement. Dans cette image, tous les 18 segments de miroir primaire de Webb sont montrés collectant ensemble la lumière de la même étoile. Crédits : NASA/STScI

Bien que le but de cette image était de se concentrer sur l’étoile brillante du centre pour évaluer l’alignement du télescope, les systèmes optiques du JWST et de NIRCam sont si sensibles que l’on peut voir les galaxies et les étoiles en arrière-plan. À ce stade de l’alignement des miroirs de Webb, connu sous le nom de « phase fine », chacun des segments du miroir primaire a été ajusté pour produire une image unifiée de la même étoile en utilisant uniquement l’instrument NIRCam. Cette image de l’étoile, appelée 2MASS J17554042+6551277, utilise un filtre rouge pour optimiser le contraste visuel.

Credits : NASA/STScI

« Il y a plus de 20 ans, l’équipe du JWST a entrepris de construire le télescope le plus puissant que personne n’ait jamais mis dans l’espace et a élaboré une conception optique audacieuse pour atteindre des objectifs scientifiques exigeants », a déclaré Thomas Zurbuchen. administrateur associé de la Direction des missions scientifiques de la NASA à Washington. « Aujourd’hui, nous pouvons dire que cette conception était la bonne et donnera des résultats fantastiques. »

Bien que le JWST soit à quelques mois de pouvoir enfin présenter sa nouvelle vision du cosmos, atteindre cette étape signifie que l’équipe est confiante que le système optique du télescope, le premier de son genre, fonctionne le mieux possible.

« En plus de permettre l’incroyable science que le JWST réalisera, les équipes qui ont conçu, construit, testé, lancé et qui vont maintenant exploiter cet observatoire ont mis au point une nouvelle façon de construire des télescopes spatiaux. » a déclaré Lee Feinberg, Responsable principal de l’élément optique du JWST (OTE) au Centre des Vols Spatiaux Goddard de la NASA (GSFC) à Greenbelt (Maryland).

Le fait que phase de l’alignement fin du télescope soit terminée signifie aussi que l’imageur principal du JWST dans l’infrarouge proche, la caméra NIRCam, est maintenant parfaitement alignée avec les miroirs du télescope.

« Nous avons entièrement aligné et focalisé le télescope sur une étoile, et la performance dépasse les spécifications. Nous sommes enthousiasmés par ce que cela signifie pour la science « , a déclaré Ritva Keski-Kuha, responsable adjointe de l’élément optique du télescope (OTE) au Centre Goddard de la NASA Goddard. « Nous savons maintenant que nous avons construit le bon télescope. »

Ce nouveau « selfie » a été créé à l’aide d’une lentille d’imagerie pupillaire spéciale à l’intérieur de l’instrument de NIRCam qui a été conçue pour prendre des images des segments du miroir primaire plutôt que des images du ciel. Cette configuration n’est pas utilisée pendant les opérations scientifiques et est utilisée strictement à des fins d’ingénierie et d’alignement. Dans cette image, tous les 18 segments de miroir primaire de Webb sont montrés collectant ensemble la lumière de la même étoile. Crédits : NASA/STScI

Ce nouveau « selfie » a été créé à l’aide d’une lentille d’imagerie pupillaire spéciale à l’intérieur de l’instrument de NIRCam qui a été conçue pour prendre des images des segments du miroir primaire plutôt que des images du ciel. Cette configuration n’est pas utilisée pendant les opérations scientifiques et est utilisée strictement à des fins d’ingénierie et d’alignement. Dans cette image, tous les 18 segments de miroir primaire du JWST sont montrés collectant ensemble la lumière de la même étoile. La tache diffuse autour du centre du miroir correspond à cette collection..

Crédits : NASA/STScI

Au cours des six prochaines semaines, les ingénieurs procéderont aux étapes d’alignement restantes avant la préparation finale des instruments scientifiques. Il faut maintenant aligner davantage le télescope pour inclure le spectrographe proche infrarouge (NIRSpec), l’instrument qui observera dans l’infrarouge thermique (MIRI), l’imageur proche infrarouge et le spectrographe sans fente Canadien (NIRISS). Au cours de cette phase du processus, un algorithme évaluera les performances de chaque instrument, puis calculera les corrections finales nécessaires pour obtenir un télescope bien aligné sur tous les instruments scientifiques. Ensuite, l’étape finale d’alignement du JWST commencera, qui consistera à ajuster toute petite erreur de positionnement résiduelle dans les segments de miroir.

L’équipe est sur la bonne voie pour conclure tous les aspects de l’alignement du télescope optique d’ici début mai, voire avant, avant de passer pour environ deux mois, à la préparation des instruments scientifiques. Les premières images et données scientifiques en pleine résolution du JWST seront publiées cet été.

(D’après le communiqué de Presse 22-024 de la NASA en date du 16 mars 2022)

Pointage et Orientation du Télescope

Le pointage et l’orientation du JWST sont effectués par le logiciel de vol, qui traite les données des capteurs de contrôle de l’attitude (voir les degrès à estimer en fin de l’article), les instructions du module d’instruments scientifiques intégrés (ISIM) et du système au sol JWST, et transmet les commandes aux actionneurs. Le sous-système de contrôle de l’assiette (ACS, Attitude Control Subsystem)) est responsable du maintien de l’assiette et du pointage, des manœuvres de balayage, de la mise en marche des propulseurs, du contrôle de la manœuvre Delta-V (correction d’orbite), du pointage de l’antenne pour assurer la meilleure réception des signaux dans les deux sens, des modes de sécurité de l’observatoire. et veiller à ce que l’observatoire respecte les contraintes d’évitement du Soleil.

Alors, comment cela se passe-t-il ?

L’ACS utilise des capteurs solaires, appelés souvent traceurs d’étoiles et des gyroscopes pour détecter l’orientation et le mouvement de l’observatoire, ainsi que des roues à réaction et/ou des propulseurs pour appliquer la force ou le couple à l’observatoire pour le contrôle de pointage ou les manœuvres. Les roues à réaction fournissent les couples de commande nécessaires pour maintenir l’assiette et le pointage ainsi que pour pivoter. Il y en a plusieurs. Elles peuvent éventuellement fonctionner en couple de manière à ce que l’une peut décélérer une autre, voire la freiner. Les traceurs stellaires fournissent une référence d’inertie stellaire pour le contrôle de pointage grossier sur 3 axes. L’ACS pointe l’axe de la ligne de visée du télescope avec une précision de 8 seconde d’arc (1-σ, par axe) de la position commandée avant de guider l’acquisition de l’étoile, sans aucune position de référence ni de données provenant du capteur de guidage fin (FGS).

Le contrôle de l’orientation de l’axe optique du télescope est assuré par des données provenant de deux balises. Ces « traceurs stellaires » ont chacun un champ de vue (FOV, Field Of View) d’un diamètre d’environ 16 degré, projeté sur un détecteur CCD de 512 x 512 pixels. Ils sont orientés à plus de 45° de la ligne de visée du télescope. Ces traceurs d’étoiles comparent les positions observées des étoiles brillantes (magnitude visuelle V < 6) à un catalogue d’étoiles interne. Cela permet de sélectionner une seule étoile pour un guidage précis, qui alors est injecté dans le champ de vision du FGS.

Bien évidemment, la durée du pointage d’une région du ciel à une autre est fonction de la longueur du mouvement que doit effectuer le télescope. Elle est déterminée en partie par la nécessité de maintenir les temps de stabilisation des instruments dans certaines limites, ainsi que le réquisit essentiel d’atteindre le nouveau pointage dès que possible. Pour les différences de pointages de 25 secondes d’arc jusqu’à 3 degré, la vitesse pour changer de position est plus ou moins lente, selon la position de départ et celle d’arrivée, parce qu’il faut éviter que les propulseurs ne soient soumis à un mécanisme de balancier avant d’atteindre la valeur désirée et minimiser tous les phénomènes turbulents de ballotement de l’agent propulsif dans les réservoirs qui alimentent les propulseurs. . Le JWST utilise deux types de propulseurs : les propulseurs augmentés à combustion secondaire (SCAT) utilisent l’hydrazine (N 2H 4) et le tétroxide dinitrogène (N 2O 4) comme agents propulsifs. Une fois excité, le liquide de propulsion peut prendre beaucoup de temps à s’humidifier (plus de 20 minutes dans certains cas).

Puis, rentre en jeu le FGS, le senseur de guidage fin (Fine Guiding Sensor, un apport essentiel de l’Agence Spatiale Canadienne): c’est une caméra proche infrarouge (NIR) installée dans l’ISIM (bande passante de ~0,6 à 5,0 μm). Cet instrument dispose de 2 canaux, chacun avec un champ d’exploration (FOV) de 2,3 x 2,3 minute d’arc, et une échelle de pixels de ~0,069 seconde d’arc. Sa fonction et d’dentifier et d’acquérir une étoile guide, mesurer sa position dans l’un des 2 canaux de guidage et fournir ces données au sous-système de contrôle de l’assiette (ACS) du JWST pour la détermination de l’assiette.

Le FGS fournira des données de positions précises à l’ACS pour la stabilisation de l’attitude et le contrôle absolu (ascension droite et déclinaison) de la position de la cible.  A noter que l’ACS utilise les données des traceurs stellaires hors axe pour contrôler l’orientation de la fusée. Outre son rôle essentiel dans l’exécution des observations, le FGS fait également partie intégrante de la mise en service de l’Observatoire JWST et de la planification de l’observatio

Premiers Photons !…

Cette semaine, le processus d’alignement de trois mois du télescope a commencé – et au cours de la dernière journée, les membres de l’équipe du JWST ont vu les premiers photons d’une lumière stellaire voyager à travers le télescope entier avant d’être détectés par la caméra proche infrarouge (NIRCam). Ce jalon marque la première des nombreuses étapes de la capture d’images qui sont d’abord floues et utilisées pour faire un réglage fin de l’optique du télescope. C’est le tout début du processus, mais jusqu’à présent, les résultats initiaux correspondent parfaitement aux attentes et aux simulations.

« C’était une journée spéciale, une journée mémorable pour l’équipe Webb. Nous avons beaucoup parlé de JWST ouvrant une nouvelle ère en astronomie, mais aujourd’hui cela s’est finalement produit ! La lumière qui a quitté un amas d’étoiles il y a plus de 1500 siècles a été recueillie par les miroirs primaires de Webb, passée à travers le train optique et détectée par les détecteurs de NIRCam. Cette première image lumineuse a ensuite été transmise à la Terre, traitée par le système de gestion des données et analysée par l’équipe Wavefront Sensing & Control, l’équipe NIRCam et d’autres. La voie à suivre pour optimiser le télescope et les instruments est bien planifiée et entre les mains d’experts. Bien que la compréhension des premières images « floues » exigera les talents de nombreuses personnes dans toutes les disciplines de la TMO, une chose est parfaitement claire – l’univers va être connu sous un jour nouveau.

Il y a eu aujourd’hui un autre fait spécial. On ne pouvait s’empêcher de remarquer tous les sourires derrière les masques. Ils étaient aussi clairs que le jour, comme si les masques étaient invisibles. Tout ce qui était nécessaire pour partager l’excitation et la joie de ce qui se passait était d’attraper le scintillement correspondant dans les yeux de quelqu’un.

Félicitations à toute l’équipe des opérations de la mission. Continuez votre excellent travail et continuez à sourire. »

 

Kenneth Sembach (Directeur de l’Institut Scientifique du Télescope Spatial)

Une équipe d’ingénieurs et de scientifiques de Ball Aerospace, du Space Telescope Science Institute et du Goddard Space Flight Center de la NASA utilisera désormais les données recueillies avec NIRCam pour aligner progressivement le télescope. L’équipe a développé et démontré la validité des algorithmes à l’aide d’un banc d’essai du télescope à l’échelle 1/6. Ils ont simulé et répété le processus à de nombreuses reprises et sont maintenant prêts à le faire avec le « vrai » télescope. Le processus se déroulera en sept phases au cours des trois prochains mois, pour aboutir à la mise en service d’un télescope entièrement aligné. Les images prises durant cette période ne seront pas « jolies » et pour l’instant ne servent strictement qu’à préparer le télescope pour la science.

Scott Acton, scientifique leader des activités de détection de front d’onde pour le JWST, Ball Aerospace; Chanda Walker, scientifique associée à cette activité, Ball Aerospace; et Lee Feinberg, responsable de l’OTE (Optique du Télescope, « Optical Telescope Element« , Centre Goddard des Vols Spatiaux de la NASA,  » Goddard Space Flight Center « , ont passé passent en revue les étapes fondamentales :

« Le déploiement des segments de miroir étant maintenant terminé, et les instruments allumés, nous avons commencé les nombreuses étapes nécessaires pour préparer et étalonner le télescope afin de faire son travail. Le processus de mise en service du télescope prendra beaucoup plus de temps que les télescopes spatiaux précédents, car le miroir primaire de Webb se compose de 18 segments de miroir individuels qui doivent fonctionner ensemble comme une seule surface optique de haute précision. »

 Les étapes du processus de mise en service comprennent :

  1. Identification de l’image du segment

Premièrement, nous devions aligner le télescope par rapport au vaisseau spatial. L’engin spatial est capable de faire des mouvements de pointage extrêmement précis à l’aide de « traceurs d’étoiles ». Pensez aux traceurs d’étoiles comme un GPS pour les engins spatiaux. Dans un premier temps, la position du vaisseau spatial à partir des traqueurs d’étoiles ne correspond pas à la position de chacun des segments de miroir.


Nous avons pointé le télescope vers une étoile brillante et isolée (HD 84406) pour capturer une série d’images qui furent ensuite assemblées pour former une image de cette partie du ciel. Mais rappelez-vous, nous n’avons pas seulement un miroir qui regarde cette étoile; nous avons 18 miroirs, dont chacun est initialement incliné vers une partie différente du ciel. En conséquence, nous avons capturé 18 copies légèrement décalées de l’étoile – chacune étant floue et distordue de façon unique. Nous appelons ces premières copies stellaires « images segmentées ». En fait, selon les positions de départ des miroirs, il fallut plusieurs itérations pour localiser les 18 segments dans une image. Un par un, nous avons déplacé les 18 segments miroirs pour déterminer quel segment créaient quelle image de segment. Après avoir apparié les segments de miroir à leurs images respectives, nous avons pu incliner les miroirs pour amener toutes les images près d’un point commun pour une analyse plus approfondie. Nous appelons cet arrangement un « tableau d’images ».

Exemple simulé d’un déploiement initial possible montrant les images provenant des 18 segments

            2. Alignement des segments

Une fois que nous avions la matrice d’images, nous pouvions effectuer un alignement des segment, qui corrige la plupart des erreurs de positionnement importantes des segments miroirs.

Nous avons commençé par déconcentrer les images du segment en déplaçant légèrement le miroir secondaire. L’analyse mathématique, appelée Récupération de Phase (Phase Retrieval), a été appliquée aux images floues pour déterminer les erreurs de positionnement précises des segments. Les ajustements des segments ont donné alors lieu à 18 « télescopes » bien corrigés. Cependant, les segments ne fonctionnent toujours pas ensemble comme un seul miroir.

Gauche: tableau initial simulé d’images ; Droite: tableau simulé des 18 segments corrigés

             3. Empilage d’images

Pour mettre toute la lumière en un seul endroit, chaque image de segment devait alors être empilée les unes sur les autres. Lors de l’étape d’empilage d’images, nous avons déplaçé les images de chaque segment de manière à ce qu’elles tombent précisément au centre du champ pour produire une image unifiée. Ce processus a préparé le télescope à la phase grossière.
L’empilage a été réalisé séquentiellement en trois groupes (segments A, segments B et segments C).

Simulation d’empilage d’images. Premier panneau : mosaïque d’images initiale. Deuxième panneau : segments A empilés. Troisième panneau : segments A et B empilés. Quatrième panneau : segments A, B et C empilés.

             4. Phases grossières

Bien que l’empilage d’images place toute la lumière au même endroit sur le détecteur, les segments agissent toujours comme 18 petits télescopes plutôt qu’un grand. Les segments doivent être alignés les uns avec les autres avec une précision inférieure à la longueur d’onde de la lumière.

Réalisé trois fois au cours du processus de mise en service, un algorithme a mesuré et corrigé le déplacement vertical (différence de piston) des segments miroirs. À l’aide d’une technologie appelée « Détection de la Dispersion des Franges » (Dispersed Fringe Sensing), nous avons utilisé NIRCam pour capturer des spectres de lumière à partir de 20 paires distinctes de segments de miroir. Le spectre ressemble à un bâton de sucre d’orge ( une « enseigne de barbier » dans les pays anglo-saxons) avec une pente (ou un angle) déterminée par la différence de piston les deux segments utilisés pour l’appariement.

Dans cette simulation, les modèles « sucre d’orge » sont créés par le capteur de franges dispersées indiquant une erreur de piston importante (en haut) ou une erreur de piston petite (en bas).

                 5. Mise en phase

La synchronisation fine des phases sera également effectué trois fois, directement après chaque cycle de mise en phase grossière, puis régulièrement tout au long de la durée de vie du JWST. Ces opérations mesurent et corrigent les erreurs d’alignement restantes en utilisant la même méthode de défocalisation appliquée pendant l’alignement du segment. Cependant, au lieu d’utiliser le miroir secondaire, nous utiliserons des éléments optiques spéciaux à l’intérieur de l’instrument scientifique qui introduisent des quantités variables de défocalisation pour chaque image (-8, -4, +4 et +8 ).

Une simulation des images défocalisées utilisées dans le processus « Mise en place fine des phases ». Les images (en haut) montrent la défocalisation d’un télescope presque aligné. L’analyse (en bas) indique les erreurs associées à chaque segment de télescope. Les segments avec des couleurs très vives ou foncées nécessitent des corrections plus importantes.

                  6. Alignement du télescope sur les champs d’exploration des instruments

Après le phasage fin, le télescope sera bien aligné à un endroit dans le champ de vision de NIRCam. Nous devrons alors étendre l’alignement au reste des instruments. Au cours de cette phase du processus de mise en service, nous effectuons des mesures à plusieurs endroits, sur chacun des instruments scientifiques, comme indiqué ci-dessous. Une plus grande variation de l’intensité indique des erreurs plus importantes en ce point de champ. Un algorithme calculera les corrections finales nécessaires pour obtenir un télescope bien aligné sur tous les instruments scientifiques.

Analyse simulée de la correction du champ d’exploration

                7. Alignement itératif pour la correction finale

Après avoir appliqué la correction du champ d’exploration, il restera à éliminer les petites erreurs de positionnement résiduelles dans les segments de miroir primaires. Nous mesurerons et apporterons des corrections à l’aide du processus fin de mise en phase. Nous effectuerons une vérification finale de la qualité de l’image sur chacun des instruments scientifiques ; une fois cette vérification effectuée, le processus de détection et de contrôle du front d’onde sera terminé.

À mesure que nous franchirons les sept étapes, nous constaterons peut-être que nous devons également répéter les étapes précédentes. Le processus est flexible et modulaire pour permettre l’itération. Après environ trois mois d’alignement du télescope, nous serons prêts à mettre en service les instruments.

(Scott Acton, scientifique leader des activités de détection de front d’onde pour le JWST, Ball Aerospace; Chanda Walker, scientifique associée à cette activité, Ball Aerospace; et Lee Feinberg, responsable de l’OTE (Optique du Télescope, « Optical Telescope Element, Centre Goddard des Vols Spatiaux de la NASA, « Goddard Space Flight Center »)

En Orbite !

En orbite !

Ça y est ! Dans les prochains jours, les personnes importantes de la NASA ne manqueront pas de célébrer cet immense succès. Ce soir à 20h05 (UTC+1, heure en France) le JWST est arrivé sur son orbite autour de L2, 30 jours après son lancement (un jour de retard pour des raisons sans grande importance !).

Comme tous les internautes, le Centre d’Expertise Français a suivi minute après minute le déroulement des opérations, avec des sentiments mêlés, d’excitation, d’inquiétude, de joie et de crainte, qui ponctuaient la fin de l’Odyssée du JWST vers son point de stationnement. Sans oublier les extraordinaires prouesses techniques qui ont conduit au déploiement d’un origami au cours de ce voyage qui va révolutionner la Science.

Nous avons suivi l’évolution de la vitesse, nous avons vécu et sursauté aux soubresauts des courbes qui illustraient les premières opérations MCC2. Nous avons vu la distance vers L2 qui se réduisait au fil des minutes, mais nous étions inquiets parce que la vitesse ne baissait pas. Le JWST devait arriver sur son orbite avec une vitesse de 100 m/s, alors qu’il y est arrivé à une vitesse double. Les ingénieurs de la NASA nous expliqueront prochainement pourquoi, mais cela n’a plus d’importance.

Le JWST est enfin arrivé à son point de stationnement. C’est une manière de dire puisqu’il ne restera pas dans une position vraiment fixe, comme cela a été plusieurs fois expliqué dans les pages de notre site, puisqu’il se déplacera sur une orbite très large autour de L2.

Les dernières opérations pour planifier et exécuter les procédures MCC2 qui se sont terminées par l’insertion du JWST dans son orbite autour de L2 se sont déroulées sans aucune difficulté, mais ont été un peu plus lentes que ce qui avait été planifié. Cela ne remet aucunement en cause la totale réussite de cette mise en orbite, après un lancement absolument parfait sur tous les points.

L’énergie nécessaire pour placer le JWST en orbite L2 a été fournie principalement par la fusée Ariane 5. Après la libération de l’observatoire de la fusée, plusieurs petits ajustements à la trajectoire ont été exécutés (propulseurs allumés pour effectuer des  corrections de mi-parcours – MCC), pour faciliter l’observatoire dans son orbite de fonctionnement. Le MCC2 était la dernière étape requise pour affiner l’orbite du halo dans lequel désormais va se déplacer le JWST.

L’illustration ci-dessous montre une vue conceptuelle de la trajectoire du JWST et de l’orbite du halo. L’observatoire s’est élancé du côté de la terre face au soleil et a parcouru une trajectoire légèrement incurvée pour, après un voyage de 1,609,344 km, entrer dans son orbite de halo L2. Une orbite de halo est une orbite qui plutôt que de suivre un seul chemin, varie périodiquement à travers une série de chemins.

Le cadre Terre/L2 orbite autour du Soleil tandis que le JWST orbitera autour de L2 (voir l’animation ci-dessous). Remarquez surtout l’orientation du télescope : le pare-soleil est perpendiculaire au Soleil, de sorte que les miroirs et les instruments de l’observatoire sont dans l’obscurité complète et froide.

Les caractéristiques de l’orbite du JWST autour de L2 ont suscité nombre de questions de la part de nos internautes. En particulier Yves (voir les discussions sur le site), qui s’est penché avec sapience et assiduité sur la question, et que je tiens à remercier.

Pour autant, je me sens le devoir de clarifier certains points. Je ne prétends pas répondre à toutes les questions. J’ai pourtant essayé de mettre à jour cette page. Que ceux que cela intéresse la consultent.

Tout d’abord, pourquoi cette orbite est-elle si large ? Pourquoi cette inclinaison par rapport à l’axe Soleil-L2 ?

C’est Newton qui nous le dit : un corps céleste en orbite perpendiculaire à la ligne Soleil-Terre, retombera immanquablement sur le centre de gravité des deux corps en mouvement. S’il tombe vers ou loin de la Terre le seul moyen de le ramener serait de lui faire faire volte-face et de le repousser, mais dans le cas du JWST cela réchaufferait les parties qui doivent rester froides, et tuerait tout le programme. Une approche plus sûre est de placer le JWST presque mais pas tout à fait à L2. Quand il aurait des velléités de retomber vers la Terre, un petit propulseur pourrait le repousser presque mais pas tout à fait sur L2.

Mais même juste à côté de L2 un nouveau problème se présente. A cette distance, le Soleil produit en permanence une éclipse annulaire sur la Terre. Le JWST est alimenté en énergie par le Soleil. Une autre complication vient du fait que les forces de Coriolis tendent à libérer l’observatoire des forces qui doivent le maintenir en orbite autour de L2. En d’autres termes, le JWST se retrouverait enfermé dans une petite orbite autour de L2, ce qui, pour l’y maintenir, nécessiterait une utilisation accrue des propulseurs.

L’attraction gravitationnelle de la Lune sur le JWST est aussi à prendre en compte. Elle varie lors de son orbite autour de la Terre. Il est facile de comprendre que toutes ces complications peuvent être minimisées en choisissant une orbite très large autour de L2.

Cela rend les choses plus faciles : plus un corps est loin du foyer de son orbite, plus il se déplace lentement, et moins d’énergie est requise pour le manœuvrer. De plus une orbite large signifie aussi que le JWST ne dérivera jamais dans l’ombre de la Terre et de la Lune. Pourtant, de larges orbites peuvent permettre à la lumière directe de la Terre et de la Lune d’outre-passer le pare-soleil et d’atteindre les miroirs primaires et secondaires. En outre, une aussi grande orbite réduit le nombre de possibilités de communication avec la Terre. C’est pourquoi le JWST devra changer son orientation pour éviter que cette lumière directe touche les miroirs. Les communications seront agencées en conséquence.

Considérons les forces auxquelles le JWST est soumis :

Plaçons l’observatoire en L2 : les forces gravitationnelles du Soleil et de la Terre vont se conjuguer.

Au cours de son orbite autour du Soleil, une force centrifuge va le pousser dans la direction opposée : Fc  = Fʘ + F

(rappelons que dans le langage « astronomique », ʘ désigne le soleil et désigne la Terre).

Ceci étant dit, il a été écrit maintes fois que cette force centrifuge n’existe pas, et de fait, c’est d’un certain point une affirmation tout à fait correcte ! Mais nous parlons ici d’une force de rotation en oubliant le cadre non inertiel. Les forces centrifuges sont donc une source utile pour résumer tous les effets qui s’appliquent.

Nul besoin d’invoquer les effets gravitationnels de la Lune, pour nous concentrer sur les questions essentielles, dans leur simplicité. Dans la discussion qui suit, il est essentiel de garder en tête le schéma suivant.

Plaçons maintenant le JWST à quelque distance de L2. La force gravitionnelle du Soleil varie très faiblement mais pas trop, parce qu’il est à 150 millions de kilomètres. Mais la Terre est à 1% de cette distance et donc la force qu’elle exerce change considérablement au cours du temps. Selon la distance, cette force est plus ou moins faible ou plus forte. Le point essentiel, ici, c’est que cette force n’est plus parallèle à la direction vers le Soleil !

Décomposons cette force Fdans la direction X vers le Soleil, et Y, perpendiculaire à la direction de L2. On voit alors le problème ! la force centrifuge est dans la direction X, et elle est de fait supérieure à la somme Fʘ + FꚚ,X et donc selon toute logique le JWST devra dériver à la fois en dessous de son orbite, mais aussi beaucoup plus loin que L2.

Il faut donc corriger cette dérive dans les 2 directions X et Y. D’abord, on rapproche le JWST un peu de la Terre, ce qui le situe en un nouveau point (L2’ dans notre schéma), proche de L2 dans la direction vers la Terre. La force de gravité devient alors plus grande et sa composante X aide à équilibrer la force centrifuge. Mais la composante Y est aussi devenue plus importante, et donc le JWST va vouloir « descendre » (sur notre schéma). Mais plus il se rapproche de la ligne Soleil-Terre, plus la force gravitationnelle de la Terre s’accroit, et donc plus l’observatoire se rapproche de la Terre. Ce n’est pas un scénario satisfaisant ! Ne serait-ce que parce que le bouclier thermique ne pourrait plus supporter l’augmentation de chaleur.

Cependant, il est possible de contrer cette force descendante en lui donnant une poussée latérale. Cela crée une nouvelle force centrifuge qui équilibre celle de la gravité de la Terre.

Si l’on regarde le schéma, cela se résume à :

Fc-halo = Fʘ + F,Y

Ce qui veut dire que, en combinaison avec le mouvement latéral, le JWST doit prendre un nouveau halo circulaire autour de L2’. Il est simplement tiré par la composante Y de la force gravitationnelle de la Terre.

Ceci est bien évidemment une discussion extrêmement simpliste. Dans le monde réel, surgissent immanquablement quelques complications. Il nous faut les prendre en compte !

Le JWST n’a pas été lancé vraiment vers L2. A la fin de sa trajectoire initiale, lorsqu’il était au point de « tomber » (pour reprendre les images de la trajectoire largement diffusées sur la toile), les manœuvres MCC2 lui ont permis de rejoindre son orbite nominale. Comme une partie de cette « chute » initiale était dirigée vers la direction X (vers la Terre), les propulseurs l’ont placé sur son orbite, mais cette poussée a incliné l’orbite d’environ 33 degrés. C’est pourquoi l’orbite n’est pas perpendiculaire à la direction L2-Soleil.

Le LWST complètera une orbite en environ 6 mois. Bien qu’il s’envolera parfois un peu au-delà de ce point, le centre géométrique de son orbite sera toujours centré sur le point L2’ du côté de la Terre. Il faut se souvenir de l’image de L2 comme une selle de cheval : il ne faut pas que la balle soit juste au milieu de la selle.

Son pare-soleil sera toujours soumis un couple de pression dû au rayonnement solaire. Cette force de rotation sera contrée en faisant tourner les roues de réaction dont il est équippé. Mais la pression de rayonnement solaire est implacable, donc ces roues de réaction devront augmenter leur rotation au fil du temps. Au bout du compte, l’emploi des propulseurs sera nécessaire pour remettre le JWST en place et laisser les roues ralentir.
N’oublions pas non plus que le JWST changera d’orientation en pointant d’une position à l’autre. Tous ces mouvements perturbent l’orbite de façon même légère, mais qui nécessiteront régulièrement la mise en fonction des propulseurs pour maintenir la station sur son orbite.

C’est pourquoi le JWST sera soumis à de fréquentes manœuvres qui seront exécutées de temps à autre par les propulseurs pour maintenir son orbite. Notons que le satellite Gaia est soumis à 3 – 4 rectifications d’orbite par an, alors qu’une telle manœuvre pour le JWST est prévue en moyenne tous les 21 jours.

Les Manœuvres MCC2 ont bien débuté!

Le JWST a été lancé sur une trajectoire directe vers une orbite autour du deuxième point de Lagrange Soleil-Terre (L2), mais il a dû effectuer ses propres manœuvres de correction de poussée à mi-parcours pour y arriver. Ceci de par sa conception, parce que s’il avait reçu trop de poussée de la fusée Ariane au départ, ou que, pour une raison ou une autre que justement ont corrigé les manœuvres MCC-1b, il serait arrivé trop vite, il aurait pu manquer son but! C’est dire qu’il serait « passé au large » et aurait manqué son Rendez-vous en L2. Dans ce cas il serait retombé sous l’attraction gravitationnelle de la Terre.  Mais, si la mécanique céleste a ses lois, celles de l’astronome a les siennes:  hors de question de se retourner vers son point de départ parce que cela aurait exposé directement l’optique du télescope et sa structure au Soleil, qui se seraient alors surchauffés et auraient annulé la mission scientifique avant même qu’elle ne puisse commencer.

En résumé, Le JWST a subi une légère  sous-combustion intentionnelle d’Ariane et a utilisé ses propres petits propulseurs à bord pour combler la différence.

Par conception, le lanceur et la trajectoire du JWST l’ont mis sur une trajectoire vers une orbite L2 avec seulement de petites entrées nécessaires pour l’affiner. La première correction importante (MCC1) a été effectuée 1h50 après le lancement peu après qu’il se soit séparé de l’étage supérieur d’Ariane. Une fois que le JWST sera dans son orbite de halo, il se déplacera le long d’une trajectoire qui épouse le contour d’une selle de cheval autour de L2 (voir actualité plus ancienne et les images ci-dessous).

Explication de la figure et de la selle de cheval: les points L4 et L5, bien que situés à des maxima du potentiel, sont paradoxalement stables. L1, L2 et L3 qui sont des points-col sont instables.

Mais pour obtenir l’orbite exacte nécessaire, et corriger toute erreur de trajectoire résiduelle, celle-ci doit être finement réglée par un certain nombre de manœuvres réalisées à l’aide des propulseurs de l’observatoire, tout au long du trajet. C’est la procédure MCC2 (2onde Correction à mi-course, pour « Mid-Course Correction 2 », qui insère le JWST dans son orbite de halo autour de L2.

La figure ci-dessous qui montre les variations de la vitesse est un bon indicateur de ce que les opérations MCC2 ont débuté le 23 janvier 2022 entre 13h20 et 14h10 (en accord avec l’heure nominale prévue de 29 jours après le lancement). Jusqu’alors, la décroissance de la vitesse était parfaitement linéaire, sans soubresauts (voir la page d’accueil du site). Lors de l’entrée sur son orbite le JWST aura une vitesse d’environ 100 m/s, soit 360 km/h. Au moment de la mise en ligne de cette note, elle doit donc encore décroître de moitié, et plusieurs manœuvres sont encore nécessaires pour ajuster finement cette rencontre, ce qui rend difficile toute estimation sur l’heure de l’entrée effective du JWST sur son orbite. Cela devrait arriver entre 18h et 20h (heure UTC+1, France).

Il semble, si l’on regarde les variations de la distance du JWST à son orbite (figure ci-dessous), qu’un évènement se soit produit certainement dû à une correction de trajectoire (la vitesse ayant subi son déclin plus ou moins régulier) entre 6h05 et 07h10 (heure UTC+1 – France) dans la matinée du 24.

Cette opération se terminera dans la journée du 24. A la fin de ces ultimes manœuvres, nous pourrons dire alors que le JWST est arrivé sur son orbite autour de L2!

Le déploiement des segments du miroir primaire est terminé!

Ceci complète l’activité déployée dans de multiples étapes de plusieurs jours pour activer et déplacer chacun des 18 segments du miroir primaire et le miroir secondaire hors de leur configuration de lancement. Ils ont été déplacés par six vérins fixés à l’arrière de chaque segment, qui ont aussi un actionneur supplémentaire à leurs centres qui ajuste leurs courbures. Le miroir tertiaire du télescope reste stationnaire. (voir image ci-dessous).

Les segments primaires du miroir ont été éloignés de 12,5 millimètres de la structure du télescope. Comme expliqué dans les actualités précédentes, c’est en utilisant six moteurs que chaque segment a été déployé sur une longueur d’environ la moitié de celle d’un trombone. Ces actionneurs ont dégagé (principalement verticalement) les miroirs de leurs dispositifs de fixation nécessaires pour le lancement et ont fourni à chaque segment suffisamment d’espace pour que chacun d’eux puisse être maintenant ajusté dans d’autres directions à partir de la position maintenant acquise pour que le processus d’alignement du front d’onde puisse démarrer. Les 18 vérins du rayon de courbure (ROC) ont également été déplacés de leur position lors du lancement. En dépit de la résistance du béryllium aux contraintes mécaniques, qui est six fois supérieure à celle de l’acier, ces actionneurs ROC vont individuellement façonner la courbure de chaque segment pour définir la forme parabolique du miroir primaire.

La prochaine étape du processus de front d’onde consistera à déplacer des miroirs dans les gammes de microns et de nanomètres pour atteindre les positions optiques finales pour que le télescope soit parfaitement aligné. Ce processus d’alignement prendra environ trois mois.

JWST