Des chercheurs cartographient la météo sur une planète située à 280 années-lumière grâce au James Webb

Une équipe internationale de chercheurs, dont fait partie le CEA-Saclay et le LESIA, a utilisé le télescope spatial James Webb de la NASA pour cartographier la météo de la géante gazeuse chaude WASP-43 b.

Des mesures en infrarouge moyen obtenues avec l’instrument MIRI, combinées à des modèles climatiques 3D et à d’autres observations suggèrent la présence de nuages épais et denses du côté nuit, un ciel dégagé du côté jour, et des vents équatoriaux atteignant jusqu’à 8 000 km/h, mixant les gaz atmosphériques autour de la planète.

Cette étude démontre les avancées de la science des exoplanètes grâce aux capacités uniques du JWST à mesurer les variations de température et à détecter les gaz atmosphériques à des centaines d’année-lumière de nous.

Cette étude fait l’objet d’une publication dans la prestigieuse revue Nature Astronomy.

Jupiter chaud lié par effet de marée

Figure 1 – Vue d’artiste de l’exoplanète géante gazeuse WASP-43 b située à environ 280 années-lumière dans la constellation du Sextan. 

Crédits : NASA, ESA, CSA, Ralf Crawford (STScI)

WASP-43 b est une exoplanète de type “Jupiter chaud” (Figure 1). De taille similaire à Jupiter et principalement composée d’hydrogène et d’hélium, elle est beaucoup plus chaude que les géantes gazeuses de notre propre système solaire, en raison de sa proximité avec son étoile, à moins de 1/25e de la distance entre Mercure et le Soleil.
Avec une orbite aussi serrée, la planète est gravitationnellement bloquée par effet de marée, présentant ainsi toujours la même face à son étoile. Elle a donc un côté continuellement illuminé et l’autre dans l’obscurité permanente. Toutefois, même si le côté nuit ne reçoit jamais de radiation directe de l’étoile, des vents atmosphériques orientés vers l’est transportent la chaleur du côté jour.
Depuis sa découverte en 2011, WASP-43 b a été observée avec de nombreux télescopes, dont les télescopes spatiaux Hubble de la NASA et Spitzer qui n’est plus en service.

“Avec Hubble, nous pouvions clairement voir qu’il y a de la vapeur d’eau du côté jour. Tant Hubble que Spitzer ont suggéré qu’il pourrait y avoir des nuages du côté nuit,” explique Taylor Bell, chercheur à la BAER Institute et auteur principal de cette étude. “Mais nous avions besoin de mesures plus précises du JWST pour commencer vraiment à cartographier la température, la couverture nuageuse, les vents et la composition atmosphérique plus détaillée tout autour de la planète.”

Cartographier la température et déduire la météo

Figure 2 – Courbe de phase du système WASP-43, obtenue par le spectromètre MIRI à basse résolution (LRS) du télescope spatial James Webb pendant 24h. La courbe de phase montre le changement de luminosité du système WASP-43 au fil du temps, lorsque la planète tourne autour de son étoile. Le système apparaît le plus lumineux lorsque le côté chaud de la planète fait face au télescope, juste avant et après son passage derrière l’étoile. Le système s’assombrit au fur et à mesure que la planète poursuit son orbite et que le côté nuit est visible par rotation. Il s’éclaircit à nouveau après être passé devant l’étoile, lorsque le côté jour revient dans le champ de vision. 
Crédits : Image : NASA, ESA, CSA, Ralf Crawford (STScI) ; Science : Taylor J. Bell (BAERI), Joanna Barstow (Open University), Michael Roman (University of Leicester).
La courte période orbitale de WASP-43 b, seulement 19,5 heures, en fait un candidat idéal pour la spectroscopie en courbe de phase, qui consiste à mesurer la variation de luminosité du système étoile-planète pendant que la planète orbite autour de l’étoile. Cette technique permet de cartographier la température à la surface de toute la planète.
 
En effet, la température d’un astre est étroitement liée à la quantité de lumière qu’il émet. Pour mesurer la lumière émise par la planète, on calcule la différence entre la luminosité de l’étoile seule (lorsque la planète est cachée derrière elle) et la luminosité combinée de l’étoile et de la planète (lorsque la planète est visible).
 
L’instrument MIRI, optimisé pour l’infrarouge moyen (de 5 à 12 microns), du JWST est un outil parfait pour cette technique car, d’une part, une planète émet principalement dans cette gamme spectrale du fait de sa température intrinsèque, et d’autre part, il faut que l’instrument soit suffisamment sensible pour détecter des différences de luminosité de l’ordre de quelques parties par million, soit 40 parties par million (0,004 %) dans le cas de WASP-43 !
 

L’équipe a donc pointé MIRI vers WASP-43 afin de mesurer la lumière du système toutes les 10 secondes pendant plus de 24 heures, soit un peu plus que le temps nécessaire à WASP-43 b pour faire le tour de son étoile. La Figure 2 montre le résultat des quelques 8 000 mesures prises dans l’infrarouge moyen.

Figure 3 – Ce graphique présente la variation de la température à la surface de l’exoplanète géante gazeuse WASP-43 b. Le côté jour possède une température moyenne d’environ 1250°C, tandis que celle du côté nuit est d’environ 600°C. Cette différence de température s’explique par le fait que la planète présente toujours la même face à son étoile, mais également par d’autres facteurs comme la vitesse du vent et la présence de nuages. Des modèles atmosphériques 3D complexes révèlent que le point le plus chaud de la planète n’est pas directement sous l’étoile, mais décalé d’environ 7 degrés vers l’est en raison de forts vents équatoriaux déplaçant l’air chaud à l’horizontale avant qu’il ne puisse rayonner de l’énergie vers l’espace. Ces vents transportent la chaleur vers le côté nuit, bien que ce dernier apparaisse tout de même trop froid, probablement en raison de nuages qui retiennent l’énergie thermique.

Crédit : Image : NASA, ESA, CSA, Ralf Crawford (STScI) ; Science : Taylor J. Bell (BAERI); Joanna Barstow (Open University); Michael Roman (University of Leicester)

“En observant sur toute une orbite, nous avons pu calculer la température des différents côtés de la planète lorsqu’ils entrent en vue,” explique Bell. “À partir de là, nous avons pu construire une carte approximative de la température à travers la planète.”

Les mesures montrent que le côté jour a une température moyenne de près de 1 250°C tandis que le côté nuit est significativement plus froid avec 600°C (cf. Figure 3). Les données aident également à localiser le point le plus chaud de la planète (le “point chaud”), qui est légèrement décalé vers l’est par rapport au point qui reçoit le plus de radiation stellaire (le « point substellaire »), là où l’étoile est la plus haute dans le ciel de la planète. Ce décalage se produit en raison des vents supersoniques, qui déplacent l’air chauffé vers l’est.

“Le fait que nous puissions cartographier la température de cette manière est un véritable témoignage de la sensibilité et de la stabilité de Webb,” déclare Michael Roman, co-auteur de l’Université de Leicester au Royaume-Uni.

Pour interpréter la carte, l’équipe a utilisé des modèles atmosphériques 3D complexes similaires à ceux utilisés pour comprendre la météo et le climat sur Terre. L’analyse montre que le côté nuit est probablement recouvert d’une épaisse couche nuageuse à haute altitude qui empêche une partie de la lumière infrarouge de s’échapper dans l’espace. En conséquence, le côté nuit – bien que très chaud – semble plus sombre et plus froid qu’il ne le serait s’il n’y avait pas de nuages.

Méthane manquant et vents forts

Figure 4 – Ce graphique compare les molécules attendues et observées dans l’atmosphère de l’exoplanète WASP-43 b, de jour comme de nuit. Comme attendu, la vapeur d’eau est présente des deux côtés, contraignant l’épaisseur des nuages et leur altitude dans l’atmosphère. Cependant, l’absence de méthane dans l’atmosphère, surtout du côté nuit, étonne car étant plus frais, il devrait exister. Les chercheurs expliquent cette absence par des vents extrêmement rapides, atteignant au moins 8000 km/h, qui empêchent la formation de méthane du côté nuit à des seuils détectables par le JWST. 
Crédits : NASA, ESA, CSA, Ralf Crawford (STScI), Joanna Barstow (Open University).

Le large spectre de lumière en infrarouge moyen (de 5 à 12 microns) capturé par le James Webb a également permis de mesurer la quantité de certaines molécules dans l’atmosphère de la planète WASP-43 b.

“Webb nous a donné l’opportunité de déterminer exactement quelles molécules nous observons et de mettre des limites sur les abondances,” déclare Joanna Barstow, co-auteur de l’Open University au Royaume-Uni.

Les spectres montrent des signes clairs de vapeur d’eau tant du côté nuit que du côté jour de la planète, fournissant des informations supplémentaires sur l’épaisseur des nuages et leur altitude dans l’atmosphère.

 

Cependant, les données montrent l’absence de méthane dans l’atmosphère. Du côté jour, cela n’est pas étonnant car il y fait trop chaud pour que la molécule puisse exister (la majeure partie du carbone devrait être sous forme de monoxyde de carbone). Toutefois, elle devrait être stable et détectable du côté nuit car plus frais.

“Le fait que nous ne voyions pas de méthane nous indique que WASP-43 b doit avoir des vitesses de vent atteignant environ 8000 km/h” explique Barstow. “Si les vents déplacent assez rapidement le gaz du côté jour vers le côté nuit et vice versa, il n’y a pas assez de temps pour que les réactions chimiques attendues produisent des quantités détectables de méthane du côté nuit.”

L’équipe pense qu’en raison de ce mélange induit par le vent, la chimie atmosphérique est la même tout autour de la planète, ce qui n’était pas évident d’après les travaux précédents avec Hubble et Spitzer.

La Supernova iconique SN 1987A sous le projecteur du JWST

Les supernovae sont des corps célestes fondamentaux dans l’évolution de l’univers, mais elles revêtent toujours d’importants mystères comme, par exemple, leur contribution relative à la production de poussières dans l’univers primordial. 

La supernova SN 1987A est apparue le 23 février 1987 dans le Grand Nuage de Magellan, à quelques 165000 années-lumière de nous. C’est la première supernova visible en 400 ans, depuis celle de 1604, dite de Kepler, en l’honneur de Johannes Kepler, qui en fut un de ses observateurs les plus assidus, et qui s’est produite, elle, dans notre Galaxie (plus précisément dans la constellation d’Ophiuchus). Née à l’ère des télescopes, SN 1987A a été depuis sa naissance, et est toujours, observée par les moyens les plus modernes dont disposent les astronomes. Elle est devenue à ce titre une véritable icone, sans être vraiment emblématique de sa classe. Rien d’étonnant, donc, à ce qu’elle soit une des premières cibles du Télescope Spatial James Webb, le JWST, dont il n’est plus nécessaire de souligner l’extrême sensitivité et l’excellente résolution angulaire.

Figure 1 – Image de SN 1987A et de son environnement, obtenue en 2022 avec le Télescope Spatial Hubble (HST) à travers un filtre centré sur la longueur d’onde de l’hydrogène à 1.08 micron. Les contours indiquent la région d’où provient l’émission d’argon fortement ionisé observée avec le MRS et NIRSpec, qui marque la présence d’un objet compact (voir le dernier paragraphe de cet article). L’étoile indique le centre de l’anneau équatorial (Fransson et al., 2024).

 

Le domaine spectral qui correspond à l’infrarouge est très important: il complète les autres domaines de longueurs d’onde du spectre électromagnétique d’un corps céleste, ce qui est nécessaire pour comprendre les mécanismes physiques qui sont en jeu; de plus, il permet non seulement d’étudier les poussières mais aussi de voir des sources lumineuses qui peuvent être cachées par ces poussières.  

Si plusieurs observations de supernovae ont été réalisées dans l’infrarouge proche (entre 1 et 5 micron), SN 1987A est la seule supernova à avoir été observée dans l’infrarouge moyen (entre 5 et 30 micron) pour être la seule connue qui soit suffisamment brillante à ces longueurs d’onde. Ces observations ont démarré depuis son apparition, mais c’était alors depuis le sol, avec tous les inconvénients que produit l’atmosphère à ces longueurs d’onde. Tous les instruments du JWST ont magnifiquement pallié ces inconvénients pour donner aux astronomes une nouvelle vision des mécanismes physiques en cours, du cœur de la supernova à son environnement circumstellaire, et jusqu’au milieu interstellaire.


Une description de l’environnement de SN 1987A ainsi qu’un compte rendu des premières observations effectuées avec le JWST se trouvent ici. Ces observations se sont poursuivies, et des résultats spectaculaires ont été obtenus. Ils sont décrits dans ce qui suit.

SN 1987A vue en Infrarouge Moyen

Avec l'imageur MIRIm

Carte des températures calculées avec un modèle standard de la composition des poussières, sur laquelle sont superposés les contours de l’image obtenue à 5,6 micron (le niveau des contours en mJy/pixel est indiqué sur la figure) (Bouchet et al., 2024).

MIRI, conçu et construit en grande partie par le CEA, sous l’égide du CNES, est l’instrument du JWST qui observe dans l’infrarouge moyen. Sa composante imageur a permis d’élaborer une carte détaillée des températures en jeu, tout en fournissant des données inédites sur la morphologie de ce que les astronomes appellent « les Restes de la Supernova » (Supernova Remnant).  Une attention particulière a été portée sur les poussières : certaines résultent de l’évolution de l’étoile progénitrice (elles sont donc antérieures à l’évènement) et se trouvent en particulier dans les différents anneaux, tandis que d’autres se sont condensées dans les éjecta pendant l’évènement. A l’aide de l’imageur de MIRI, une destruction des poussières dans certaines zones, et une nouvelle condensation de celles-ci dans d’autres ont pu être observées. Les images obtenues montrent que l’onde de choc initiale, véritable moteur du phénomène, a maintenant atteint les régions extérieures du milieu circumstellaire (voir l’article de Bouchet et al.).

Images obtenue à 5,6, 10, 18 et 25,5 micron avec l’imageur de MIRI (MIRIm), avec les contours de l’image obtenue avec le MRS à 6,985 micron, qui correspond à la longueur d’onde de l’argon doublement ionisé. Les dimensions du faisceau lumineux pour chaque longueur d’onde sont illustrées en bas à gauche de chaque image (Bouchet et al., 2024).

Avec le spectroscope MIRI MRS

Toujours dans l’infrarouge moyen (ou thermique), le spectrographe à moyenne résolution spectrale de MIRI (appelé MRS, pour Medium Resolution Spectrograph) a permis grâce à son excellent pouvoir de séparation spatial de distinguer en détails les éjecta de la supernova, l’anneau équatorial qui les entoure, et le milieu circumstellaire plus lointain. L’anneau équatorial est situé à une distance de 0,7 année-lumière du centre de la supernova, et résulte d’un épisode de l’évolution de son progéniteur il y a quelques 20000 ans. Le milieu circumstellaire plus lointain consiste en particulier en deux anneaux qui formerait un sablier s’il était vu perpendiculairement à son grand axe (voir figure dans l’actualité précitée). Lorsque du gaz en expansion heurte des régions denses, il se refroidit. Les spectres de la lumière émise dans ces différentes régions permettent de mettre en évidence certaines propriétés de ce gaz lorsqu’il rentre en contact avec l’anneau équatorial, et après le choc. Ils ont aussi conduit à l’identification d’éléments chimiques dans les milieux les moins denses, dont la forte ionisation pourrait avoir été produite par la progression d’une succession d’onde de chocs à travers l’anneau, ou par le rayonnement UV associé à l’origine de l’évènement. Le MRS a aussi montré que les grains de poussières les plus petits sont plus facilement détruits que ceux de dimensions supérieures, et a mis en lumière les principaux éléments qui composent les éjecta (voir l’article de Jones et al.)

SN 1987A vue en Infrarouge Proche

Avec l'imageur NIRCam

L’extraordinaire résolution angulaire de la caméra NIRCam (Near Infrared Camera) , avec un pouvoir de séparation de 0,05 seconde d’arc dans l’infrarouge proche a permis d’identifier pour la première fois trois régions bien distinctes : (1) de faibles croissants d’hydrogène moléculaire, situés entre les éjecta et l’anneau équatorial, (2) une barre qui est une substructure des éjecta, et (3) une émission continue brillante à l’extérieur de l’anneau. Dans les courtes longueurs d’onde (de 1 à 2,3 micron), les images de NIRCam montrent que le rayonnement provient d’une émission de raies qui révèlent la présence des éléments chimiques qui se trouvent dans les éjecta et dans certaines régions de l’anneau équatorial (que les astronomes appellent les points chauds). Par contre, dans la fenêtre spectrale comprise entre 3 et 5 micron, il s’agit d’une émission continue provenant de poussières dans les éjecta (poussières qui, par ailleurs, pourraient masquer le centre de la supernova), et d’une émission synchrotron dans l’anneau équatorial et son extérieur. Ces observations montrent que le refroidissement et la destruction des poussières sont plus rapides que le refroidissement du rayonnement synchrotron, qui est lui-même plus rapide que la recombinaison de l’hydrogène dans l’anneau. Un sous-produit très important de ces observations réalisées avec NIRCam, est que celles-ci ouvrent une nouvelle fenêtre dans l’étude de l’accélération des particules et de la physique des chocs dans des détails sans précédent, lorsqu’ils sont explorés par l’émission synchrotron dans le proche infrarouge. Ceci permet d’établir une image très précise de la façon dont une supernova évolue (voir l’article de Matsuura et al.).

Image composée à partir de cinq filtres de NIRCam (1,5 et 1.6 micron en bleu ; 2 micron en jaune ; 4 micron en orange; 4,4 micron en rouge). L’intérieur des éjecta est composé essentiellement de fer qui rayonne à 1.6 micron. A l’intérieur des éjecta, on aperçoit une barre alignée approximativement sur la direction Est – Ouest, et 2 croissants apparaissent entre les éjecta et l’anneau équatorial. Des points chauds sont aussi visibles dans l’anneau équatorial délimité par les 2 ellipses, mais on en trouve aussi à l’extérieur de cet anneau. La position des 2 anneaux extérieurs est indiquée par les ellipses en pointillés (Nord vers le haut, Est vers la droite). (Matsuura et al., 2024)

Avec le spectroscope NIRSpec

Pour clore cette série d’observations, le spectrographe NIRSpec (Near Infrared Spectrograph) a fourni la première spectroscopie spatialement résolue de l’éjecta et de l’anneau équatorial entre 1 et 5 micron. Pour la première fois aussi, des cartes en 3-D des émissions du fer à l’intérieur des éjecta ont pu être construites, ainsi que de celles de l’hélium dans le choc inverse (tout choc qui se propage dans une région dense génère un choc inverse) : la première sonde la géométrie de l’évènement et la seconde trace la composition du milieu circumstellaire. La carte 3-D du fer, prépondérant dans les éjecta, révèle une morphologie fortement asymétrique qui ressemble à un dipôle brisé dominé par deux gros amas animés de vitesses élevées (environ 2300 km/s). Ces observations prouvent également que l’intérieur de ces éjecta a commencé à interagir avec le choc inverse. NIRSpec a observé aussi de très nombreuses raies d’hydrogène moléculaire : celui-ci est très probablement excité par un rayonnement ultraviolet extrême, mais pourrait aussi résulter d’une combinaison de collisions et recombinaisons dans les couches des éjecta de basse température. Enfin, plusieurs raies coronales très fortement ionisées ont été identifiées dans l’anneau équatorial : leur existence requiert une température supérieure à 2 millions de degrés qui serait associée au rayonnement observé dans les hautes énergies, en particulier dans les rayons-X (voir l’article de Larsson et al.)

Image obtenue avec NIRSpec dans la région spectrale autour de 1,44 micron : c’est la longueur d’onde du fer que l’on voit dans les ejecta, alors que le fer et l’hydrogène qui sont présents dans l’anneau équatorial rayonnent à 1,427 et 1,460 respectivement. La courbe indiquée en pointillés délimite approximativement la région où le choc inverse est détecté (un seul composant du continuum est présent à cette longueur d’onde). L’anneau équatorial est incliné de 43°, et le Nord est dirigé vers l’observateur (Larsson et al., 2024).

Visualisation 3D de l’hélium présent dans le choc inverse. La position des anneaux extérieurs est indiquée par les ellipses bleu et rouge. L’anneau équatorial est connecté aux anneaux extérieurs par les lignes en pointillés pour aider à la visualisation (Larsson et al., 2024).

Un mystère finalement élucidé

Finalement, pour couronner magistralement cette moisson de résultats, le JWST a permis d’élucider un mystère de longue date. Les neutrinos sont des particules élémentaires, de masse pratiquement nulle, qui sont engendrées par des réactions nucléaires. Tandis que le Soleil produit des neutrinos de basse énergie, les neutrinos de haute énergie sont produits par des cataclysmes cosmiques extrêmement violents tels que les supernovae. L’implosion d’une supernova génère en effet une émission de neutrinos, puisque lors de l’effondrement gravitationnel du cœur de l’étoile, les électrons fusionnent avec les protons, produisant des neutrons et des neutrinos. Ces neutrinos sont hautement énergétiques (99% de l’énergie émise par les supernovae l’est sous forme de neutrinos) : une telle émission a été observée quelques heures avant l’apparition de l’évènement lumineux visible par les observatoires de Kamiokande II, IMB et Baksan (Kamiokande détecta 11 neutrinos, IMB 8 neutrinos et Baksan 5 neutrinos), le temps d’un éclair qui dura moins de 13 secondes.

 

Les observations de neutrinos constituent une preuve irréfutable que l’évènement a donné naissance à une étoile à neutron (ou à un trou noir), mais où est-elle?

Les neutrinos n’interagissant que très faiblement avec la matière, ils sont immédiatement libérés, c’est pourquoi le pic de neutrinos a été détecté 3 heures avant la contrepartie optique. Une étoile à neutrons peut présenter différents aspects : si elle tourne rapidement sur elle-même et qu’elle possède un puissant champ magnétique, elle projette alors le long de son axe magnétique un mince pinceau de radiations, et un observateur placé approximativement dans la direction de cet axe observera une émission pulsée par un effet de phare, appelée pour cette raison pulsar. Par contre, si elle n’est ni associée à un compagnon, ni entourée de matière circumstellaire, ou qu’elle n’a pas développé une émission pulsée, une étoile à neutrons est extrêmement difficile à détecter car seule l’émission thermique de sa surface est éventuellement décelable. De plus une étoile à neutron a un diamètre d’une dizaine de kilomètres seulement (pour une masse d’environ 3 milliard de tonnes !), ce qui en fait un des astres les plus petits de l’univers (hormis les trous noirs).

Très vite, de nombreuses recherches de cet astre résiduel ont été entreprises. Elles se sont toutes avérées négatives, que ce soit par des calculs de bilan énergétiques basés sur les observations, par la quête de pulses en utilisant des techniques de photométrie rapide, ou par de l’imagerie directe à toutes les longueurs d’onde. Pour expliquer ce manque de détection, les astronomes ont émis plusieurs hypothèses : les poussières environnantes masqueraient l’étoile à neutron ; la force du champ magnétique ne serait pas suffisante pour avoir formé un pulsar ; il y aurait bien un pulsar, mais le faisceau énergétique n’est pas dirigé dans notre direction…

 

Le JWST a enfin levé le voile :  la théorie indiquant que les photons ionisants émis par une étoile à neutron doivent exciter les raies d’émission des éléments lourds qui sont dans l’éjecta, il s’agit donc de rechercher ces émissions. Pour cela, l’équipe qui conduit cette recherche a analysé les données du MRS et de NIRSpec. La présence de raies fortement ionisées a été identifiée grâce à ces deux instruments. Elles sont dues en particulier à la présence d’argon et de souffre, qui sont justement des éléments produits par la combustion nucléaire de l’oxygène et du silicium. Ces raies en émission avaient déjà été détecté mais avec des résolutions (angulaire et spectrale) trop insuffisantes pour permettre de savoir si l’émission provenait des éjecta ou de l’anneau équatorial. Les observations du JWST ont prouvé sans ambigüité possible que l’émission provient d’une source centrale séparée de l’anneau, et qu’il ne s’agit pas d’une lumière diffusée par celui-ci.

Les raies étroites qui ont été observées ne peuvent être excitées que par une source de photons ionisants ou par une onde de choc. Les sources potentielles pourraient être : (1) des photons d’une nébuleuse de vent de pulsar (PWN, pour Pulsar Wind Nebula) générée par une étoile à neutron, (2) des photons qui proviennent directement d’une étoile à neutron qui se refroidit, (3) une accrétion sur un objet compact, ou (4) des chocs dans une nébuleuse de vent de pulsar. D’autres possibilités ont été envisagées, mais ont été écartées pour diverses raisons.

Quoiqu’il en soit, toutes les explications envisageables impliquent la présence d’une jeune étoile à neutron, ou d’un trou noir, au centre des éjectas. L’hypothèse du trou noir a été écartée parce que le progéniteur de SN 1987A avait une masse trop faible (inférieure à 20 masse solaire), tout comme le cœur de fer (qui avait aussi une masse inférieure à 2 masse solaire).

Il s’agit là d’une découverte majeure faite grâce aux observations réalisées par les instruments du JWST (voir l’article de Fransson et al.). Elle a d’ailleurs justifié d’un communiqué de presse émis par la Revue Science, et repris par la NASA et de très nombreux instituts.

 

Combinaison d’une image du télescope spatial Hubble de SN 1987A et de la source d’argon compacte. La source bleue faible au centre est l’émission de la source compacte détectée avec l’instrument JWST/NIRSpec. Autour de cette source, on aperçoit les débris stellaires, contenant la plupart de la masse, s’étendant à des milliers de km/seconde. La « chaîne de perles » intérieure brillante est le gaz des couches externes de l’étoile qui a été expulsé environ 20 000 ans avant l’évènement final. Les débris rapides entrent maintenant en collision avec l’anneau, ce qui explique les points lumineux.
En dehors de l’anneau intérieur se trouvent deux anneaux extérieurs, vraisemblablement produits par le même processus que celui qui a formé l’anneau intérieur. Les étoiles brillantes à la droite et à la droite de l’anneau intérieur ne sont pas liées à la supernova.

Note : il est coutume, dans l’immense majorité des articles traitant de supernovae, d’utiliser le terme “explosion” pour marquer l’évènement. Ce terme est impropre et prête à une grave confusion. Le mécanisme en jeu dans une supernova comme SN 1987A (dite de Type II), est le résultat d’un effondrement des couches extérieures sur le cœur de l’étoile, puis le collapse du cœur sur lui-même (composé essentiellement de fer). La matière qui s’effondre rebondit alors sur ce noyau dur. Elle est alors expulsée par une puissante onde de choc. C’est ce qui produit le phénomène observé. Il ne s’agit donc en aucun cas d’une “explosion”, puisqu’il s’agit d’une “implosion” initiale. Par contre, une supernova de Type Ia résulte d’une explosion d’une étoile dans un système multiple.

SN 1987A, Première Star des observations du JWST

SN 1987A est une supernova qui a explosé dans le Grand Nuage de Magellan, une galaxie naine proche de la Voie lactée à environ 164500 années-lumière (1,6 milliard de milliards de kilomètres), ce qui en fait la supernova la plus proche observée depuis la supernova dite de Kepler en 1604 (lequel, pour des raisons météo n’a pu l’observer que bien après son apparition – il pleuvait sur Prague !), qui avait eu lieu dans notre Voie lactée, peu après la supernova de Tycho Brahe, qui lui était sur place à l’abbaye de Herrevad, ce qui lui a permis de l’observer en novembre 1572. L’objet n’est pas dans cet article de revenir sur ces évènements historiques, tellement passionnants, mais de souligner le fait qu’il a fallu attendre près de 400 ans pour qu’un terrien puisse observer un tel évènement. J’ai eu moi-même, l’incroyable (inespérée !) chance de voir de mes yeux nus cette supernova, depuis la Cordillère des Andes.

En effet, le Grand Nuage de Magellan n’est visible que depuis l’hémisphère sud. Pour le lecteur qui s’y intéresserait, il convient de souligner que le nom des Petit et Grand Nuage de Magellan ont pris ces appellations car contrairement à ce que l’on peut observer dans l’hémisphère Nord ou le pôle est fléché par une étoile, rien de tel dans l’hémisphère austral. A l’époque où le GPS n’existait pas, les navigateurs utilisaient un sextant pendant la journée (il fallait voir l’horizon) mais gardaient leur route la nuit en fonction des étoiles. Il y avait deux nuages dans le ciel. On ne parlait pas encore de galaxie, on n’en connaissait pas même le concept ! Magellan fut le premier à se rendre compte que pour savoir où était le pôle sud, il suffisait de construire un triangle équilatéral dont deux points seraient le centre de ces nuages et le troisième le pôle. C’était remarquablement ingénieux. Et précis !

Vue d’artiste de la Supernova SN1987A et son environnement proche après les observations réalisées avec ALMA (Crédits ESO/NAOJ/NRAO/ Alexandra Angelich)

Figure 1 – Vue d’artiste de la Supernova SN 1987A et son environnement proche après les observations réalisées avec ALMA (Crédits ESO/NOAO/NRAO/Alexandra Angelich)

 

Après cette diversion, revenons à la supernova SN 1987A.  Les premières observations du phénomène ont été faites quelques heures à peine après que son éclat eut atteint la Terre, dans la nuit du 23 février 1987 par plusieurs astronomes amateurs et professionnels d’Amérique du Sud, d’Australie et de Nouvelle-Zélande. Très tôt, les premiers neutrinos furent détectés, ce qui fut une première, et confirmait d’une manière spectaculaire les théories en vigueur qui prévoyaient la formation d’une étoile à neutrons. De plus, ces détections laissaient augurer qu’une nouvelle ère de l’astrophysique allait commencer. Force est de constater que nous devrons attendre pour cela de détecter plus de neutrinos naissants de phénomènes astrophysiques.

Nous nous attendions à ce que cette supernova devienne très brillante, mais il faut reconnaître que nos espoirs ont été quelque peu déçus. Très vite les théoriciens ont réalisé que ceci était dû au fait que l’étoile qui s’effondrait était une géante bleue. On nous avait inculqué à l’école que ce genre d’implosion (et non pas d’explosion) ne pouvait provenir que de la fin de vie d’une super-géante rouge. Première anomalie, vite expliquée par les mêmes théoriciens.  Mais aussi première découverte. L’évolution de super géante bleue en supernova s’explique par une perte de masse avant son explosion, ce qui peut se traduire par un passage de supergéante rouge à supergéante bleue. Cette théorie a été confirmée par la présence de trois anneaux de gaz autour de SN 1987A.


La seconde découverte, de toute importance, fut d’observer que de la poussière avait pu se condenser dans cet environnement extrêmement violent, 400 jours après l’implosion. La présence de molécules dans les débris a été mise en évidence très vite après l’évènement (100 jours après, environ). S’en est suivie, en août 1988, la découverte d’une condensation de poussières grâce aux observations conduites dans l’infrarouge à l’ESO (l’Observatoire Européen Austral, situé au Chili). Mais plus tard, à partir d’observations réalisées avec le satellite infrarouge Herschel en 2010, puis confirmée par le radio télescope submillimétrique ALMA de l’ESO en janvier 2014, la présence d’une énorme quantité de poussières froides dans les débris (0,25 masse solaire!) a non seulement surpris la communauté astronomique mais a aussi ravivé le débat sur l’origine des poussières dans l’Univers primordial. Mais nous ignorons encore la composition de ces poussières froides. Une des grandes questions de l’astrophysique actuelle avait-elle trouvé une réponse ? D’où proviennent les premières poussières, puisque nous savions que celles libérées par des étoiles cacochymes n’étaient arrivées que fort tard (l’évolution des étoiles prend un certain temps). La quantité de poussières détectées semblait pourtant bien inférieure à celle qui pourrait répondre à la question : ces poussières résultaient-elles de celles détectées en 1988, ou avait-elles une autre origine ? Nous n’en savions rien !


La morphologie particulière de ces anneaux est une des principales caractéristiques de SN 1987A. Les deux anneaux extérieurs et l’anneau intérieur (plus petit) forment une sorte de « sablier », l’anneau intérieur formant le col. Le télescope spatial Hubble a permis de dater l’éjection de matière les constituant à environ 20 000 ans avant l’explosion. Deux étoiles brillantes se trouvent près des anneaux extérieurs, sans aucun lien avec le système ; les éjectas observés apparaissent en vert. SNR signifie « Restes de la Supernova » (SuperNova Remnant, en anglais).

Figure 2 – La morphologie particulière de ces anneaux est une des principales caractéristiques de SN 1987A. Les deux anneaux extérieurs et l’anneau intérieur (plus petit) forment une sorte de « sablier », l’anneau intérieur formant le col. Le télescope spatial Hubble a permis de dater l’éjection de matière les constituant à environ 20 000 ans avant l’explosion. Deux étoiles brillantes se trouvent près des anneaux extérieurs, sans aucun lien avec le système ; les éjectas observés apparaissent en vert. SNR signifie « Restes de la Supernova » (SuperNova Remnant, en anglais).

Des études montrent que la poussière interstellaire est née très tôt dans l’histoire de l’univers, avant même que ne s’enclenchent les processus classiques de formation de la poussière interstellaire, les nébuleuses planétaires. Tous les regards sont tournés vers l’explosion des étoiles massives dont on sait qu’elles ont eu lieu rapidement et SN1987A nous offre un laboratoire idéal pour aborder cette question. Avec MIRI nous espérons enfin savoir si la poussière résiste à l’onde de choc de l’explosion, si de la poussière naît dans une supernova, où et comment.

Quel type de poussière nait dans une supernova ? La question peut sembler anecdotique, mais quand on sait que les molécules naissent à la surface des grains de poussière, c’est l’origine de la complexité dans l’univers qui se joue ici.

En 1991, le télescope Spatial Hubble nous fit découvrir un système de 3 anneaux autour de la supernova (voir figures 2 et 3). L’anneau intérieur (formé de poussières mais surtout de gaz) reste encore très brillant alors que tous les modèles prédisaient qu’à l’heure des observations du JWST (le « James Webb Space Telescope »), il aurait cessé d’être aussi lumineux. C’est sans doute que la destruction des poussières n’a pas été aussi efficace que ce que prévoyait la théorie, et que l’onde de choc n’a pas affecté le gaz. De toutes manières, pour étudier les poussières, il faut observer en infrarouge ! C’est un peu pour cela qu’a été conçu le JWST.

Les étoiles massives donnent naissance à des supernovae lorsque leurs enveloppes et leurs cœurs collapsent, par manque de combustion centrale, et que le fer, dernier élément à avoir été synthétisé, ne peut plus être consumé. L’implosion est suivie d’un rebond des couches externes de leurs atmosphères sur ce cœur de fer. Il en résulte une étoile à neutron, un pulsar, voire un trou noir. Un autre type de supernovae, totalement différent, celles qui sont utilisées pour calculer des distances cosmologiques, et qui nous ont permis de constater que l’expansion de l’univers s’était accélérée 7 milliards d’années après le Big Bang, sont le résultat d’une déflagration. D’elles, il n’en reste plus rien.

Figure 3 – L’onde de choc produite par l’explosion en atteignant l’anneau équatorial intérieur (formé par des poussières – et de gaz- quelques 20000 ans avant l’implosion) a formé au fil des années un magnifique collier de perle! L’intensité lumineuse de ce collier a commencé à décroître à partir de 2014, lorsque l’onde de choc passait au-delà de l’anneau (images HST ; crédit NASA)

L’excellente résolution angulaire et l’extrême sensitivité des instruments du JWST, en particulier MIRI, en font le seul observatoire capable d’observer la distribution des poussières dans le milieu circumstellaire autour de SN1987A et dans les éjectas. D’autre part, l’étoile à neutron (ou le pulsar ?) qui s’est formée au moment de l’implosion de la supernova n’a toujours pas été détectée. Des modèles théoriques prévoient qu’elle pourrait l’être avec des observations effectuées dans l’infrarouge thermique. Si tel est le cas, seul MIRI pourrait nous offrir le luxe de cette découverte !

Le milieu déjà perturbé par le passage de l’onde de choc est maintenant affecté par une onde de choc inverse qui s’approche des régions externes de l’éjecta. S’il est vrai que l’étude de SN 1987A nous a en général permis de confirmer, voire affiner, la théorie, des inconnues demeurent : par exemple, quelle est l’origine des structures circumstellaires observées ? Que pouvons-nous apprendre sur le milieu interstellaire avant même que l’étoile qui a implosé se soit formée ? Quel est le mécanisme responsable de l’émission observée dans l’infrarouge thermique, attribuée à la présence de poussières? Celles qui s’étaient condensées dans l’éjecta peu après l’explosion sont-elles maintenant détruites par cette onde de choc inverse ? Que reste-t-il au cœur de l’explosion ? Pouvons-nous détecter l’étoile à neutrons, le pulsar, qui résulte de l’évènement ? Les réponses dépendent fortement de celle que nous donnerons à une question fondamentale qui, 30 ans après l’explosion, reste toujours très débattue: l’étoile qui a donné naissance à SN 1987A faisait-elle partie d’un système binaire ?

Seule la combinaison d’observations multi longueurs d’onde, des rayons-X aux ondes radio, peut nous permettre de dresser un état des lieux du milieu circumstellaire et de comprendre les mécanismes actuellement en jeu. Le JWST fait partie de cet ensemble avec NIRCam et NIRSpec dans le proche infrarouge, et MIRI dans l’infrarouge thermique. Le HST (Télescope de Hubble) continue à observer la supernova dans les longueurs d’onde visibles, comme le complexe ALMA le fait dans les ondes submillimétriques. Quelques questions se posent : Y aura-t-il des signatures spectrales de NIRSpec sur la dynamique du choc, sur des raies atomiques ? NIRCam va-elle nous révéler de nouvelles structures, et nous permettra-t-elle de quantifier des variations de température ? L’enquête est ouverte et va sans aucun doute poursuivre son cours pendant plusieurs années.

Il reste que le JWST fait donc le pont entre la vision que nous dans le domaine visible le HST et les découvertes extraordinaires réalisées par ALMA aux très grandes longueurs d’onde : en ce sens il est absolument essentiel pour l’étude des phénomènes physiques qui régissent maintenant les restes de SN 1987A !

Du temps d’observation GTO (« Guaranteed Time Observations ») a été attribué aux équipes qui ont construits des instruments, délivré des composants électroniques, des logiciels, ou on fait profiter le projet de leurs compétences techniques ou interdisciplinaires. Dans ce cadre préétabli, SN 1987A a été l’une des cibles prioritaires pour les observations effectuées par MIRI, le seul instrument (conçu et fabriqué au CEA) des quatre embarqués sur l’observatoire qui observe dans des grandes longueurs d’onde (infrarouge thermique). Les premières données sont extraordinaires du point de vue esthétique, mais elles nécessitent un traitement spécifique qui sera fait prochainement fait au CEA, ce qui permettra d’ajouter de la physique à la beauté.  

La figure 4 nous montre les premières données obtenues avec le JWST à quatre longueurs d’onde (5.6, 10, 18, et 25.5 micron). Au vu de ces premières images, rien de très nouveau, apparemment, que nous ne connaissions déjà. Sinon le fait que l’émission dans la région Nord-Est de l’anneau domine toujours et encore la luminosité globale, alors que les modèles théoriques prévoyaient qu’elle aurait dû disparaître).  Ces premières images, non encore traitées, mais déjà spectaculaires, nous disent surtout qu’une plus profonde analyse devrait nous permettre de rajouter à l’esthétique une étude scientifique appropriée. Le département d’Astrophysique du CEA, auquel appartient le Centre d’Expertise JWST/MIRI (MICE) au sein de l’IRFU a déjà commencé à s’atteler à la tâche.


Figure 4 – Ces premières images de MIRI obtenues le 18 juillet 2022 aux longueurs d’onde de 5,6, 10, 18, et 25,5 micron n’ont pas encore été traitées. Le Département d’Astrophysique du CEA s’y emploie activement !

TOI-178 : un sytème avec 5 planètes en transit et en « résonance orbitale »

On dit qu’une planète est en transit devant son étoile quand, vue depuis un télescope, elle passe devant l’étoile. Elle fait alors une petite éclipse qui dure quelques heures. On a détecté à ce jour près de 3500 planètes en transit dans plus de 2600 systèmes planétaires.

L’immense intérêt des transits est que, si la planète a une atmosphère, une partie de la lumière de l’étoile passe à travers cette atmosphère, ce qui change alors les couleurs de cette partie de l’étoile. De ces changements de couleur on peut déduire quels gaz sont présents dans l’atmosphère de la planète. De là, déduire qu’il y a peut-être « de la vie » sur quelque planète ainsi observée est encore hasardeux. Il y a encore un grand pas à franchir car en réalité on ne sait pas extrapoler de façon fiable ce que l’observe sur Terre.

Tiré du site de l’ESA/Plato

Le James Webb Telescope va observer un système à 7 planètes en transit déjà très étudié, TRAPPIST-1. Depuis sa découverte en 2016, un autre système intéressant avec trois planètes a été détecté autour de l’étoile TOI-178 par le satellite TESS de la NASA (Transiting Exoplanet Survey Satellite), dédié à la recherche de transits planétaires. Initialement repéré par un chercheur de l’Observatoire de Paris, il semblait présenter une configuration que les astronomes cherchent depuis longtemps, une possible co-orbitalité: deux planètes sur la même orbite, ayant de ce fait la même période. Cela a incité toute une équipe européenne à chercher à en savoir plus par de nouvelles observations,  car bien qu’une telle configuration orbitale soit observée pour de nombreux astéroïdes orbitant Jupiter et Neptune, cela n’a jamais été observé dans un système exoplanètaire. Afin de confirmer leurs prédictions, les astronomes ont réuni de nombreuses observations au sol, avec le Very Large Telescope (VLT) européen situé au Chili en utilisant les instruments ESPRESSO, NGTS , SPECULOOS , ainsi que des observations depuis l’espace avec le satellite CHEOPS de l’Agence Spatiale Européenne (4 visites pour un total de 11,9 jours d’observation!). Et alors, ô surprise, ce système ne contient pas trois planètes dont deux co-orbitales, mais six, ayant chacune des périodes distinctes, respectivement 1.9, 3.2, 6.5, 9.9, 15.2 et 20.7 jours. Ce système planétaire présente une architecture très intéressante. car remarquable:  sur les 6 planètes, 5 ont des périodes orbitales très particulières. Les cinq planètes extérieures du système TOI-178 suivent en effet une chaîne 18 : 9 : 6 : 4 : 3 , c’est à dire qu’elles forment une chaine de résonance: leurs périodes sont liées par des multiples entiers: lorsque la seconde planète fait 18 orbites autour de l’étoile, la troisième en fait exactement 9, la quatrième 6, la cinquième 4 et la sixième 3. Les systèmes planétaires en chaine de résonance sont rares et précieux car ils permettent de contraindre la stabilité du système dans le temps ainsi que la configuration orbitale et les masses des planètes à partir de l’observation de leurs transits uniquement. Cette particularité peut être un avantage précieux quand les masses ne sont pas mesurables par la méthode des vitesses radiales, comme c’est le cas pour le système TRAPPIST-1 . Petite déception, les deux planètes qui étaient supposées être sur la même orbite n’étaient qu’une erreur d’interprétation due au trop petit nombre d’observations par TESS.

Les masses des planètes ont été obtenues à partir de la méthode des vitesses radiales grâce à l’instrument ESPRESSO du VLT et leurs rayons par la méthode des transits (observés par CHEOPS, NGTS et SPECULOOS). À partir de ces deux grandeurs, les densités des planètes ont pu être estimées.

A leur grande surprise, les astronomes se sont aperçus que la densité était très variable d’une planète à l’autre, ce qui remettrait en question la compréhension actuelle de la formation et de l’évolution des systèmes planétaires en général. Contrairement à ce qui se passe dans le système solaire et dans les autres systèmes à plusieurs planètes, la densité ne décroît pas lorsqu’on s’éloigne de l’étoile, mais présente des hauts et des bas en fonction de la distance.

Cela pose de sérieux problèmes aux modèles de formation des systèmes planétaires.

L’équipe qui a découvert ce système intrigant a obtenu 24 heures d’observations sur la camera NIRSpec du JWST. La mesure des abondances relatives de diverses molécules dans ces planètes grâce aux transits permettra de contraindre les scénarios de formation du système (« migration » ou non des planètes dans le système).

Pour en savoir plus :

Cheops dévoile un système

Vidéo

Relevé du Champ Ultra Profond de Hubble avec MIRI

Extragalactique

histoire de l’univers

Relevé du Champ Ultra Profond de Hubble avec MIRI

L’univers a “explosé” il y a environ 13,8 milliards d’années. Les détails physiques de son évolution, depuis une minuscule fraction de secondes après le Big Bang jusqu’à la recombinaison de l’hydrogène.


L’univers avait alors environ 380 000 ans et était à une température de 4000 K ce qui permettait la formation d’hydrogène neutre. A ce moment-là, l’univers n’était plus opaque au rayonnement et les photons (qui sont les particules qui véhiculent la lumière) ont pu se déplacer sur de longues distantes avant d’être absorbés ou diffusés par la matière (notons que ces photons de l’époque existent toujours, ce sont eux qui forment le fameux rayonnement fossile). Le terme de recombinaison est évidemment impropre, mais provient sans doute de raisons historiques.

Extragalactique

histoire de l’univers

Relevé du Champ Ultra Profond de Hubble avec MIRI

L’univers a “explosé” il y a environ 13,8 milliards d’années. Les détails physiques de son évolution, depuis une minuscule fraction de secondes après le Big Bang jusqu’à la recombinaison de l’hydrogène.


L’univers avait alors environ 380 000 ans et était à une température de 4000 K ce qui permettait la formation d’hydrogène neutre. A ce moment-là, l’univers n’était plus opaque au rayonnement et les photons (qui sont les particules qui véhiculent la lumière) ont pu se déplacer sur de longues distantes avant d’être absorbés ou diffusés par la matière (notons que ces photons de l’époque existent toujours, ce sont eux qui forment le fameux rayonnement fossile). Le terme de recombinaison est évidemment impropre, mais provient sans doute de raisons historiques.

L’époque de recombinaison marque le début des âges sombres, appelée ainsi car aucune étoile n’existe encore. Les âges sombres prendront fin avec la « renaissance cosmique », qui est l’époque de ré-ionisation (EoR), lorsque un rayonnement dont l’origine n’est pas encore connue avec certitude a commencé à ré-ioniser de façon importante les atomes neutres qui s’étaient formés à la recombinaison. La date précise de la ré-ionisation est sujette à débat, et tout ce qu’on peut dire c’est qu’elle s’est produite entre 100 et 400 millions d’années après le Big Bang.

Une des priorités du projet JWST :

Depuis le tout début du projet JWST une des premières priorités des thèmes scientifiques était la formation des galaxies et leur évolution aux premiers âges de l’Univers observable. Et comme nous venons de le voir, un des problèmes fondamentaux à résoudre dans ce contexte a trait au début de l’EoR. Il est donc nécessaire d’étudier l’évolution de l’univers depuis un décalage vers le rouge Redshift  en anglais) d’environ 1100 (époque supposée du début de la recombinaison), jusqu’à un décalage de 6 (l’univers avait 1 milliard d’années et était à 19 K). 


La grande question est de savoir d’où proviennent les photons responsables de l’ionisation.

 Il est fort probable que les principaux contributeurs sont les galaxies dans lesquelles se formèrent les premières étoiles. Celles-ci sont d’hypothétiques étoiles très massives (dites de population III), qui auraient brillé pendant un bref laps de temps (moins de 1 millions d’années chacune). Il est bien connu que plus une étoile est massive plus elle consomme vite son carburant thermonucléaire. Ces étoiles de population III n’existeraient donc plus depuis bien longtemps (selon certains scientifiques, elles pourraient être à l’origine des sursauts gamma très lointains). 


Les galaxies qui les hébergeaient sont intrinsèquement si peu lumineuses qu’elles ne pouvaient être détectées par aucun instrument existant, avant le JWST.

HUDF 

Hubble Ultra Deep Field

Cette image du HUDF montre des galaxies d’âge, de forme et de couleurs variés. Les galaxies les plus petites et les plus rouges (environ 100) sont les galaxies les plus lointaines ayant été observées par un télescope optique. Elles existaient quand l’Univers avait juste 800 millions d’années. Une région de ce champ, appelée HUDF-JD2 est mise en évidence dans le cercle situé sur les trois agrandissements à droite de l’image (en haut dans la lumière visible, au milieu dans l’infrarouge proche, en bas dans l’infrarouge thermique).

Avec une sensibilité unique pour des longueurs d’onde supérieures à 5 micron, l’instrument MIRI embarqué sur le JWST jouera un rôle prépondérant dans l’étude des différentes phases de l’EoR, et des toutes premières époques à laquelle se formèrent les galaxies. Avec MIRI, il sera possible pour la première fois:

Programme GTO 1283 de 60 heures

Ce programme photométrique et statistique a deux objectifs : réaliser un relevé profond d’une région précise du Champ Ultra Profond du télescope de Hubble (HUDF) avec un filtre à 5,6 micron, et obtenir des images à 10 micron des champs cosmologiques autour des galaxies sélectionnées pour une étude spectroscopique à très grand décalage vers le rouge qui fait l’objet d’un second volet de ce programme GTO.


Ce relevé effectué à une longueur d’onde de 5,6 micron permettra d’étendre la Fonction de Masse Stellaire dans les Galaxies (GSMF, pour Galaxy Stellar Mass Function) d’un autre ordre de grandeur dans la masse des étoiles en comparaison avec les études actuelles, jusqu’à des limites exhaustives de 300 millions de masse solaire à z= 3, et d’un milliard de masse solaire à z=6 – 7, ainsi que de trouver plusieurs dizaines de galaxies de plus petite masse à ces grands décalages vers le rouge. De plus, il fournira aux chercheurs la possibilité de contraindre d’une manière significative la GSMF pour des décalages vers le rouge 7 6) et était donc en pleine époque de ré-ionisation seront résolues (ie. le détail qu’il est possible de discerner sur une image dépend de la résolution spatiale du capteur utilisé. 


Elle est fonction de la dimension du plus petit élément qu’il est possible de détecter ; un objet résolu, en astronomie, c’est un objet dans laquelle on peut dissocier, distinguer ses composants, en l’observant à l’aide d’un instrument d’optique suffisamment puissant.

HUDF : Hubble Ultra Deep Field

Cette image du HUDF montre des galaxies d’âge, de forme et de couleurs variés. Les galaxies les plus petites et les plus rouges (environ 100) sont les galaxies les plus lointaines ayant été observées par un télescope optique. Elles existaient quand l’Univers avait juste 800 millions d’années. Une région de ce champ, appelée HUDF-JD2 est mise en évidence dans le cercle situé sur les trois agrandissements à droite de l’image (en haut dans la lumière visible, au milieu dans l’infrarouge proche, en bas dans l’infrarouge thermique).

Avec une sensibilité unique pour des longueurs d’onde supérieures à 5 micron, l’instrument MIRI embarqué sur le JWST jouera un rôle prépondérant dans l’étude des différentes phases de l’EoR, et des toutes premières époques à laquelle se formèrent les galaxies. Avec MIRI, il sera possible pour la première fois:

Programme GTO 1283 de 60 heures

Ce programme photométrique et statistique a deux objectifs : réaliser un relevé profond d’une région précise du Champ Ultra Profond du télescope de Hubble (HUDF) avec un filtre à 5,6 micron, et obtenir des images à 10 micron des champs cosmologiques autour des galaxies sélectionnées pour une étude spectroscopique à très grand décalage vers le rouge qui fait l’objet d’un second volet de ce programme GTO.


Ce relevé effectué à une longueur d’onde de 5,6 micron permettra d’étendre la Fonction de Masse Stellaire dans les Galaxies (GSMF, pour Galaxy Stellar Mass Function) d’un autre ordre de grandeur dans la masse des étoiles en comparaison avec les études actuelles, jusqu’à des limites exhaustives de 300 millions de masse solaire à z= 3, et d’un milliard de masse solaire à z=6 – 7, ainsi que de trouver plusieurs dizaines de galaxies de plus petite masse à ces grands décalages vers le rouge. De plus, il fournira aux chercheurs la possibilité de contraindre d’une manière significative la GSMF pour des décalages vers le rouge 7 6) et était donc en pleine époque de ré-ionisation seront résolues (ie. le détail qu’il est possible de discerner sur une image dépend de la résolution spatiale du capteur utilisé. 


Elle est fonction de la dimension du plus petit élément qu’il est possible de détecter ; un objet résolu, en astronomie, c’est un objet dans laquelle on peut dissocier, distinguer ses composants, en l’observant à l’aide d’un instrument d’optique suffisamment puissant.

(1911, p. 269)

Si nous ne pouvons pas « résoudre » ces nébuleuses, ce serait à cause de la petitesse extrême des composantes, et non pas parce que ces objets célestes sont excessivement éloignées.
H.Poincaré
Hyp. cosmogon

Par exemple, les taches blanchâtres et en apparence continues de la voie lactée se résolvent dans un puissant télescope, en un amas de points lumineux distincts). 


Si une galaxie n’est pas résolue, du moins MIRI pourra fixer des limites supérieures étroites sur leurs dimensions. Ainsi, cet instrument permettra d’examiner l’emplacement de la plus grande partie des étoiles issues de l’épisode initial de la formation d’étoiles. Ce relevé jouera aussi un rôle important pour sélectionner des Noyaux Actifs de Galaxies (AGN Active Galaxy Nuclei obscurcis par les poussières, pour étudier l’assemblage des galaxies, et leur évolution morphologique.


Ce programme s’inscrit dans le cadre d’une coordination des instruments NIRCam, NIRSpec et MIRI consacrée à l’étude photométrique et spectroscopique du HUDF et des champs environnants.

NEP: un Champ Profond Observé par le JWST

Extragalactique

North Ecliptic Pole

NEP: un Champ Profond Observé par le JWST

Observations du champ de domaine temporel du Pôle Écliptique Nord à l’usage de la communauté.

Le pôle écliptique nord NEP, pour North Ecliptic Pole est l’un des deux points d’intersection de la sphère céleste avec une ligne perpendiculaire au plan de l’écliptique et passant par le centre de la sphère céleste (l’écliptique est le grand cercle tracé par le mouvement apparent annuel du centre du soleil sur la sphère céleste). Il fera l’objet de 2 programmes GTO: GTO 1176 (110 heures d’observation) et GTO 1255 (2.2 heures). Il est situé dans la zone nord que le JWST peut observer tout le temps (CVZ, pour Continuous Viewing Zone).

Extragalactique

North Ecliptic Pole

NEP: un Champ Profond Observé par le JWST

Observations du champ de domaine temporel du Pôle Écliptique Nord à l’usage de la communauté.

Le pôle écliptique nord NEP, pour North Ecliptic Pole est l’un des deux points d’intersection de la sphère céleste avec une ligne perpendiculaire au plan de l’écliptique et passant par le centre de la sphère céleste (l’écliptique est le grand cercle tracé par le mouvement apparent annuel du centre du soleil sur la sphère céleste). Il fera l’objet de 2 programmes GTO: GTO 1176 (110 heures d’observation) et GTO 1255 (2.2 heures). Il est situé dans la zone nord que le JWST peut observer tout le temps (CVZ, pour Continuous Viewing Zone).

Carte des observations

Elles seront effectuées avec tramage, c’est à dire un très faible déplacement de chaque image, pour corriger les artefacts du détecteur. Lors des réductions des données, les images d’une même région sont superposées après recentrage. Ce qui en améliore considérablement la qualité. Les 4 époques auxquelles seront réalisées ces observations sont illustrées par trois champs alignés. Les régions en bleu foncé sont celles qui feront l’objet d’observations spectroscopiques.

La région qui sera observée par le JWST avec l’instrument NIRCam est pratiquement circulaire, avec un diamètre de 14 minutes d’arc, et les observations seront focalisées dans 4 positions (« le moulin à vent » du JWST, comme l’appellent ironiquement les investigateurs du programme, illustré par la figure ci-dessus!).

C’est la seule région du ciel où le JWST peut obtenir un relevé profond non contaminé (c’est-à-dire qu’il n’y a pas d’étoiles en arrière-plan et que l’extinction par les poussières est faible), à une cadence et une orientation arbitraire. Elle ne contient d’autre part aucun objet céleste qui pourrait éblouir les détecteurs et a déjà fait l’objet de relevés profonds dans les domaines UV, visible et rouge lointain avec le télescope spatial Hubble (HST). Il est essentiel pour mener à bien ce programme de le conduire entièrement pendant le premier cycle des observations du JWST.

Le champ NEP

Le champ NEP de domaine temporel (TDF, pour Temporal-Domain Field) est une région du ciel qui contient beaucoup d’objets dont la luminosité varie avec le temps – les objets transitoires : supernovae, système solaire, étoiles éruptives, étoiles variables, etc… Ce qui en fait un champ de première importance c’est qu’il est propre, et qu’il peut être observé à n’importe quelle époque avec le JWST. 

 

Cela permettra à la communauté de réaliser une vaste gamme de programmes scientifiques innovants et passionnants, y compris des recherches et des suivis d’objets transitoires à grands décalages vers le rouge en particulier les supernovae; des études de variabilité de sources allant des noyaux de galaxies actives (AGN, pour Active Galactique Nuclei de faible luminosité aux atmosphères de naines brunes, en passant par des objets très lointains qui subissent un effet de lentille gravitationnelle causé par des amas de galaxies qui s’interposent entre eux et notre ligne de visée, et la mesure de parallaxes d’objets extrêmement dispersés de la ceinture de Kuiper et du Nuage de Oort, ou encore les mouvements propres de naines brunes proches, d’étoiles de faible masse, et des naines blanches super-froides.

Le but de ce programme est de couvrir une large région pour en obtenir des images avec l’instrument NIRCam et des spectrogrammes avec l’instrument NIRISS, en plus de créer un champ de domaine temporel qui sera observé tout au long de la durée de vie du JWST.


En effet tout suivi des observations sera bienvenu, que ce soit dans le cadre de programmes ERS ou de programmes généraux «classiques». C’est pourquoi les résultats de ces observations seront immédiatement mis à la disposition de tous les chercheurs intéressés. C’est ainsi que seront atteints le but et le potentiel de ces programmes GTO qui sont de pouvoir être complétés et affinés ultérieurement par l’ensemble de la communauté astronomique.

La Dynamique de l’Amas des Étoiles Proches du Centre Galactique

Voie Lactée

galaxie spirale

La Dynamique de l’Amas des étoiles proches du Centre galactique

Le centre de notre Galaxie (la Voie Lactée) sera observée avec le JWST, à l’aide de l’instrument NIRCam ( programme GTO 1306). Le but de cette étude est d’étudier ou établir les orbites des étoiles qui gravitent autour du trou noir supermassif qui y réside, et d’analyser la structure du noyau de cet amas.

 

Cette première série d’observations préparera une seconde, prévue pour quelques années après, qui permettra de mesurer les mouvements propres des étoiles de l’amas. Ce programme constitue aussi une démonstration de la capacité du JWST à réaliser des mesures astrométriques avec une très grande précision.

Voie Lactée

GALAXIE SPIRALE

La Dynamique de l’Amas des étoiles proches du Centre galactique

Le centre de notre Galaxie (la Voie Lactée) sera observée avec le JWST, à l’aide de l’instrument NIRCam ( programme GTO 1306). Le but de cette étude est d’étudier ou établir les orbites des étoiles qui gravitent autour du trou noir supermassif qui y réside, et d’analyser la structure du noyau de cet amas.

 

Cette première série d’observations préparera une seconde, prévue pour quelques années après, qui permettra de mesurer les mouvements propres des étoiles de l’amas. Ce programme constitue aussi une démonstration de la capacité du JWST à réaliser des mesures astrométriques avec une très grande précision.

Une attention particulière sera portée sur les étoiles les plus faibles, qu’il est beaucoup plus difficile d’observer depuis le sol, et dont la luminosité ne saturera pas les détecteurs de l’instrument. Un diagramme indiquant la relation entre la couleur et la magnitude de chacune des étoiles observées sera construit, ce qui permettra de distinguer et de rejeter celles qui sont en avant- ou en arrière-plan du centre galactique (et qui n’appartiennent donc pas à l’amas). 


Les observations seront principalement effectuées dans la partie la plus bleue du spectre couvert par NIRCam, afin d’obtenir la meilleure résolution spatiale possible (ie. plus on observe vers les courtes longueurs d’onde, meilleure est la résolution saptiale, c’est-à-dire plus ponctuelle est l’image d’une étoile).

De SIGMA à INTEGRAL

A gauche, la région la plus centrale de la Galaxie (champ de 4°x4°), observée durant toute la durée de vie de la mission SIGMA pour une durée totale de plus de 100 jours . A droite, la même région autour de la source SgrA telle que mesurée par la caméra ISGRI dans la bande d’énergie 20-40 KeV durant le printemps 2003, pour un temps d’observation équivalent à seulement 13 jours. Les images inférieures représentent le champ total de 19°x19° vus par les deux instruments. Le gain à la fois en sensibilité et en finesse d’image d’INTEGRAL est clairement visible. La position radio de SgrA, emplacement du présumé trou noir massif, est indiquée par une flèche, dans l’image supérieure d’ISGRI. Crédits CEA/DAp.

Le centre de notre galaxie

Photo impressionnante révélée le 20 août 2015 par l’ESA. Elle résulte d’une compilation de plus de 100 clichés, réalisée par des chercheurs de l’Institut Max-Planck. On y découvre le centre de notre galaxie. Ou du moins la vision qu’en a XMM-Newton, un observatoire spatial qui voit le monde en rayons X. Elle couvre une distance d’à peu près 1000 années-lumière (une seule de cette unité de distance est égale à 9460 milliards de kilomètres ; le centre de la galaxie se situe à quelque 26.000 à 28.000 années-lumière de notre soleil).

Le centre de notre galaxie

Photo impressionnante révélée le 20 août 2015 par l’ESA. Elle résulte d’une compilation de plus de 100 clichés, réalisée par des chercheurs de l’Institut Max-Planck. On y découvre le centre de notre galaxie. Ou du moins la vision qu’en a XMM-Newton, un observatoire spatial qui voit le monde en rayons X. Elle couvre une distance d’à peu près 1000 années-lumière (une seule de cette unité de distance est égale à 9460 milliards de kilomètres ; le centre de la galaxie se situe à quelque 26.000 à 28.000 années-lumière de notre soleil).

Image du centre de notre galaxie montrant les observations des faisceaux lumineux issus des quatre télescopes de 8 mètres du VLT de l’ESO (Very Large Telescope). Crédits ESO/MPE/S.Gillessen

Les Objets Proches de la Terre (NEOs)

Système Solaire

Near-Earth Objects

Les Objets Proches de la Terre (NEOs)

Les objets proches de la Terre, ou NEOs (Near-Earth Objects) revêtent un très grand intérêt pour plusieurs communautés, et ce pour diverses raisons: leur importance scientifique intrinsèque, les risques d’impact et les moyens de les réduire, les programmes d’explorations humaines, et un domaine émergeant actuellement qui a trait à l’extraction privée des ressources minières des astéroïdes.

 

 

Bien que plusieurs missions récentes aient visité certains NEO, la plupart avaient des capacités spectroscopiques limitées. Le JWST observera 2 NEO particulièrement intéressants, Phaéton et Don Quichotte (Programme GTO 1245)

Système Solaire

NEAR-EARTH OBJECTS

Les Objets Proches de la Terre (NEOs)

Les objets proches de la Terre, ou NEOs (Near-Earth Objects) revêtent un très grand intérêt pour plusieurs communautés, et ce pour diverses raisons: leur importance scientifique intrinsèque, les risques d’impact et les moyens de les réduire, les programmes d’explorations humaines, et un domaine émergeant actuellement qui a trait à l’extraction privée des ressources minières des astéroïdes.

 

 

Bien que plusieurs missions récentes aient visité certains NEO, la plupart avaient des capacités spectroscopiques limitées. Le JWST observera 2 NEO particulièrement intéressants, Phaéton et Don Quichotte (Programme GTO 1245)

Ces observations conduites avec le JWST utiliseront les instruments NIRCam, NIRSpec et MIRI.

Toutatis, le célèbre NEO, d’une forme de pomme de terre, de 4,6 km dans sa plus grande longueur qui a frôlé la Terre (1 550 000 km tout de même!)

 le 29 septembre 2004

Les NEOs Phaéthon & Don Quichotte

Phaéthon

est un astéroïde Apollon dont le périhélie se situe bien à l’intérieur de l’orbite de Mercure (en 2017 il s’agissait de l’astéroïde nommé qui se rapproche le plus du Soleil), et dont l’orbite est liée à la douche de météores des Geminides (c’est d’ailleurs le seul astéroïde à présenter cette singularité).

 

Les astéroïdes Apollon sont une famille d’astéroïdes géocroiseurs. Elle est nommée d’après Apollon, le premier de cette famille à avoir été découvert. 

Les astéroïdes sont classés dans cette famille si leur demi-grand axe est strictement supérieur à 1 unité astronomique (ua : la distance Terre – Soleil) et leur périhélie inférieur à 1,017 ua. 

 

En janvier 2017 on connaissait 8 365 astéroïdes Apollon, dont 1 181 sont numérotés et 67 nommés.

 

 

Les Geminides sont une pluie de météores qui a lieu à la mi-décembre, formée par les débris de la comète Phaeton qui brûle dans notre atmosphère. 

 

Ce corps céleste est inhabituel car il n’a été reconnu que récemment comme une comète. Pendant de nombreuses années, les astronomes pensaient que Phaethon était un grand astéroïde, en raison de son manque total de glace. Finalement, les chercheurs ont découvert que le manque de glace était simplement dû à la proximité de son chemin avec le soleil, et ils l’ont reclassifiée comme une comète éteinte ou une comète de roche. En fait, ce serait plutôt les restes du noyau d’une comète morte. 

 

 

Parce que Phaeton est une comète étrange, le comportement de ses météorites est également un peu inhabituel.

le 13 décembre 2017

Douche des Géminides dans la Voie Lactée

Depuis Auriga (en haut) jusqu’à Puppis (en bas). On distingue Orion à droite. Photo prise depuis Quailway Cottage dans l’Arizona, près de Portal.

  • L’une des marques des Geminides est que, au lieu du mélange de glace, de roche et de débris spatiaux assortis, les météorites que l’on voit fuser ne sont que des morceaux de la comète. Cela signifie qu’il y en a beaucoup plus que dans d’autres pluies célèbres (les Perséides et les Léonides, par exemple), et ce qui leur permet de tomber plus profondément dans notre atmosphère et de créer également des arcs plus longs.

Douche des Géminides dans la Voie Lactée

Depuis Auriga (en haut) jusqu’à Puppis (en bas). On distingue Orion à droite. Photo prise depuis Quailway Cottage dans l’Arizona, près de Portal.

  • L’une des marques des Geminides est que, au lieu du mélange de glace, de roche et de débris spatiaux assortis, les météorites que l’on voit fuser ne sont que des morceaux de la comète. Cela signifie qu’il y en a beaucoup plus que dans d’autres pluies célèbres (les Perséides et les Léonides, par exemple), et ce qui leur permet de tomber plus profondément dans notre atmosphère et de créer également des arcs plus longs.

le 13 décembre 2017

Don Quichotte

est un astéroïde cométaire membre de la famille des Amor, géocroiseur, aréocroiseur (dont l’orbite croise celle de Mars, de Ares et zénocroiseur (dont l’orbite croise celle de Jupiter, de Zeus. 

 

C’est un objet potentiellement dangereux pour nous, qui fut découvert le 26 septembre 1983 par Paul Wild. Il possède des propriétés spectrales identiques à celles des comètes, ce qui est très rare dans la population NEO.

 

Les astéroïdes Amor sont une famille d’astéroïdes qui croisent l’orbite de Mars mais non celle de la Terre. 

 

Ils sont ainsi nommés d’après l’astéroïde Amor et sont aussi nommés astéroïdes géo-frôleurs (Earth-grazing asteroids, en anglais).

 

Ce sont des frôleurs extérieurs, c’est-à-dire qu’ils s’approchent de l’extérieur de l’orbite de la Terre, mais ne la coupent pas. Le membre le plus célèbre de cette famille est probablement Éros, qui fut à la fois le premier à être découvert et le premier astéroïde sur lequel une sonde (NEAR Shoemaker) s’est posée. 

 

En janvier 2017, on connaissait 5 971 astéroïdes Amor dont 960 sont numérotés et 73 nommés.

© Nasa, JPL-Caltech, DLR, NAU

L’atmosphère (ou coma) de la comète Don Quichotte, sur une image capturée par le télescope spatial Spitzer.

Trajectoire des différents types d’astéroïdes géocroiseurs : Apollon, Aten et Amor. Les astéroïdes Amor ne font que frôler l’orbite terrestre dessinée en bleu sur le schéma.

Gros Astéroïdes et Troyens

Système solaire

un troyen est un astéroïde

Gros Astéroïdes et Troyens

En astronomie, un troyen est un astéroïde (parfois une lune) partageant la même orbite qu’une planète ou un de ses satellites à des points stables appelés points de Lagrange L4 et L5. Ces points se trouvent à 60° en avant ou en arrière de l’objet principal.

 

Le premier astéroïde troyen fut découvert en 1906 par Max Wolf à proximité de Jupiter. Il précédait la géante gazeuse de 60° sur son orbite, illustrant pour la première fois une théorie émise 130 ans plus tôt par le mathématicien français Pierre de Lagrange. Il avait démontré en 1772 que lorsque deux corps célestes orbitent l’un autour de l’autre, il existe cinq points de l’orbite où la force de gravitation compense la force centrifuge et où un troisième corps céleste reste immobile par rapport aux deux autres. Mais seuls les points L4 et L5 donnent lieu à des orbites vraiment stables.

Système solaire

UN TROYEN EST UN ASTÉROÏDE

Gros Astéroïdes et Troyens

En astronomie, un troyen est un astéroïde (parfois une lune) partageant la même orbite qu’une planète ou un de ses satellites à des points stables appelés points de Lagrange L4 et L5. Ces points se trouvent à 60° en avant ou en arrière de l’objet principal.

 

Le premier astéroïde troyen fut découvert en 1906 par Max Wolf à proximité de Jupiter. Il précédait la géante gazeuse de 60° sur son orbite, illustrant pour la première fois une théorie émise 130 ans plus tôt par le mathématicien français Pierre de Lagrange. Il avait démontré en 1772 que lorsque deux corps célestes orbitent l’un autour de l’autre, il existe cinq points de l’orbite où la force de gravitation compense la force centrifuge et où un troisième corps céleste reste immobile par rapport aux deux autres. Mais seuls les points L4 et L5 donnent lieu à des orbites vraiment stables.

Depuis 1906 on a découvert des milliers d’astéroïdes sur les points de Lagrange de certaines planètes. En 2013, Jupiter se taille la part du lion avec des milliers de troyens, Mars en compte sept et Neptune neuf. Les quatre plus grands objets, Céres, Vesta, Pallas et Hygée, comprennent quasiment la moitié de la masse totale de la ceinture d’astéroïdes.

Les études récentes ont montré que les astéroïdes plus de 200 km de diamètre sont les restes intacts des touts premiers âges du Système Solaire et que ces objets possédaient une histoire dynamique avec des processus toujours en cours.

L’asteroîde Pallas

Pallas (du grec ancien Παλλάς)

est le troisième plus grand objet de la ceinture principale d’astéroïdes du Système solaire, après la planète naine Cérès et l’astéroïde Vesta. C’est le second astéroïde découvert. Il le fut fortuitement le 28 mars 1802 par Heinrich Olbers, alors que l’astronome tentait de retrouver Cérès à l’aide des prédictions orbitales de Carl Friedrich Gauss. Charles Messier avait été cependant le premier à l’observer en 1779, quand il suivait la trajectoire d’une comète, mais il prit l’objet pour une simple étoile de magnitude 7.

 

Pallas contient environ 7 % de la masse totale de la ceinture d’astéroïdes. À l’instar de Cérès, Junon et Vesta, il fut considéré comme une planète jusqu’à ce que la découverte de nombreux autres astéroïdes conduise à sa reclassification. 

 

Comme celle de Pluton, l’orbite de Pallas est très fortement inclinée (34,8°) par rapport au plan de la ceinture d’astéroïdes principale, ce qui rend l’astéroïde difficilement accessible par engin spatial. Sa surface est constituée de silicates, son spectre étant similaire à celui des météorites de chondrites carbonées.

Hygée (ou Hygie)

est le quatrième plus gros astéroïde de la ceinture principale d’astéroïdes en volume et en masse. Se caractérisant par une forme oblongue et des diamètres variant de 350 à 500 kilomètres, il possède une masse estimée à 2,9 % de la masse totale de la ceinture. C’est le plus grand des astéroïdes dotés d’une surface carbonée (type C).

Hygée

Programme GTO 1244

Trois des quatre plus grands astéroïdes, de faible albédo, seront observés avec le JWST.

 

Ces observations étendront les mesures faites sur Cérès bien au-delà des longueurs d’ondes étudiées par la mission DOWN et fourniront des mesures uniques de Pallas et Hygée qu’il est impossible d’obtenir à partir d’autres plates-formes.

 

Les astéroïdes Troyens sont des objets clés pour la compréhension de la dynamique des débuts du système solaire et pour la migration des planètes. Les scientifiques pensent qu’ils sont biologiquement riches, mais leurs distances et leurs faibles albédos rendent très difficile leur observation.

 

Les observations des astéroïdes qui seront réalisées avec le JWST amélioreront la connaissance de leur densité, qui sera combinée avec les données sur leur composition, obtenue par spectroscopie.

 

Un des objectifs de ce programme étant la préparation de la mission LUCY de la NASA, prévue pour 2033.

Pallas (du grec ancien Παλλάς)

L’asteroîde Pallas

est le troisième plus grand objet de la ceinture principale d’astéroïdes du Système solaire, après la planète naine Cérès et l’astéroïde Vesta. C’est le second astéroïde découvert. Il le fut fortuitement le 28 mars 1802 par Heinrich Olbers, alors que l’astronome tentait de retrouver Cérès à l’aide des prédictions orbitales de Carl Friedrich Gauss. Charles Messier avait été cependant le premier à l’observer en 1779, quand il suivait la trajectoire d’une comète, mais il prit l’objet pour une simple étoile de magnitude 7.

 

Pallas contient environ 7 % de la masse totale de la ceinture d’astéroïdes. À l’instar de Cérès, Junon et Vesta, il fut considéré comme une planète jusqu’à ce que la découverte de nombreux autres astéroïdes conduise à sa reclassification. 

 

Comme celle de Pluton, l’orbite de Pallas est très fortement inclinée (34,8°) par rapport au plan de la ceinture d’astéroïdes principale, ce qui rend l’astéroïde difficilement accessible par engin spatial. Sa surface est constituée de silicates, son spectre étant similaire à celui des météorites de chondrites carbonées.

Hygée (ou Hygie)

Hygée

est le quatrième plus gros astéroïde de la ceinture principale d’astéroïdes en volume et en masse. Se caractérisant par une forme oblongue et des diamètres variant de 350 à 500 kilomètres, il possède une masse estimée à 2,9 % de la masse totale de la ceinture. C’est le plus grand des astéroïdes dotés d’une surface carbonée (type C).

Programme GTO 1244

Trois des quatre plus grands astéroïdes, de faible albédo, seront observés avec le JWST.

 

Ces observations étendront les mesures faites sur Cérès bien au-delà des longueurs d’ondes étudiées par la mission DOWN et fourniront des mesures uniques de Pallas et Hygée qu’il est impossible d’obtenir à partir d’autres plates-formes.

 

Les astéroïdes Troyens sont des objets clés pour la compréhension de la dynamique des débuts du système solaire et pour la migration des planètes. Les scientifiques pensent qu’ils sont biologiquement riches, mais leurs distances et leurs faibles albédos rendent très difficile leur observation.

 

Les observations des astéroïdes qui seront réalisées avec le JWST amélioreront la connaissance de leur densité, qui sera combinée avec les données sur leur composition, obtenue par spectroscopie.

 

Un des objectifs de ce programme étant la préparation de la mission LUCY de la NASA, prévue pour 2033.

La Planète MARS sera observée avec le JWST

Système solaire

depuis plus d’un siècle

La planète Mars sera observée avec le JWST

La planète Mars a fasciné les scientifiques depuis plus d’un siècle. De nos jours, c’est un désert glacé dont la teneur en dioxide de carbone dans l’atmosphère est 100 fois plus faible que cette qui baigne la Terre. Pourtant, des indices semblent suggérer que dans les premiers temps de notre système solaire, il y a plusieurs milliards d’années, Mars avait un océan d’eau conséquent.

 

Le JWST étudiera cette planète dans le cadre du  programme GTO (1415)  qui se propose d’en apprendre plus sur le mécanisme qui a fait que la planète est passé d’un état humide à un état sec, et sur ce que cela signifie quant à son habitabilité passée et présente.

Système solaire

depuis plus d’un siècle

La planète Mars sera observée avec le JWST

La planète Mars a fasciné les scientifiques depuis plus d’un siècle. De nos jours, c’est un désert glacé dont la teneur en dioxide de carbone dans l’atmosphère est 100 fois plus faible que cette qui baigne la Terre. Pourtant, des indices semblent suggérer que dans les premiers temps de notre système solaire, il y a plusieurs milliards d’années, Mars avait un océan d’eau conséquent.

 

Le JWST étudiera cette planète dans le cadre du  programme GTO (1415)  qui se propose d’en apprendre plus sur le mécanisme qui a fait que la planète est passé d’un état humide à un état sec, et sur ce que cela signifie quant à son habitabilité passée et présente.

Mars a été visité par plus de missions spatiales que n’importe quelle autre planète de notre système solaire. A l’heure actuelle (avril 2018) pas moins de 6 vaisseaux spatiaux actifs orbitent autour de la planète, tandis que 2 véhicules, les Mars Exploration Rover MER roule sur son sol. 

 

C’est une mission double de la NASA lancée en 2003, composée de deux robots mobiles ayant pour objectif d’étudier la géologie de la planète Mars et en particulier le rôle joué par l’eau dans l’histoire de la planète. Les deux robots ont été lancés au début de l’été 2003 et se sont posés en janvier 2004 sur deux sites martiens susceptibles d’avoir conservé des traces de l’action de l’eau dans leur sol. 

Chaque rover (astromobile, ou robot d’exploration), piloté par un opérateur depuis la Terre, a alors entamé un périple en utilisant une batterie d’instruments embarqués pour analyser les roches les plus intéressantes:

MER-A 

rebaptisé Spirit a atterri le 3 janvier 2004 dans le cratère Gusev, une dépression de 170 kilomètres de diamètre qui a peut-être accueilli un lac.

MER-B 

renommé Opportunity s’est posé le 24 janvier 2004 sur Meridiani Planum.

Le robot d’exploration Curiosity

  • a découvert, à partir de l’analyse d’un échantillon de sol martien provenant de Rocknest, une zone sablonneuse située dans le cratère Gale, que le sol contenait entre 1,5 % et 3 % d’eau, ce qui est considérable. En effet, une telle teneur en eau signifie que 0,3m3 de sol martien contient en moyenne 1 litre d’eau ! 
  •  
  • Curiosity a également permis de confirmer la présence d’autres composés chimiques, notamment du dioxyde de soufre, du dioxyde de carbone et de l’oxygène.

Le robot d’exploration Curiosity

  • a découvert, à partir de l’analyse d’un échantillon de sol martien provenant de Rocknest, une zone sablonneuse située dans le cratère Gale, que le sol contenait entre 1,5 % et 3 % d’eau, ce qui est considérable. En effet, une telle teneur en eau signifie que 0,3m3 de sol martien contient en moyenne 1 litre d’eau ! 
  •  
  • Curiosity a également permis de confirmer la présence d’autres composés chimiques, notamment du dioxyde de soufre, du dioxyde de carbone et de l’oxygène.

Les avantages du JWST et les défis à relever

Un atout clé est de pouvoir prendre un instantané du disque entier de Mars en un clin d’oeil. 

Les navettes spatiales, en revanche, prennent du temps pour faire une carte complète et peuvent donc être affectées par la variabilité quotidienne, tandis que les astromobiles ne peuvent que voir l’emplacement où ils se trouvent. Les processus diurnes (le long de l’axe Est-Ouest) et latitudinaux (entre les hémisphères), y compris les effets saisonniers pourront être mis en évidence. Le JWST bénéficie aussi d’une excellente résolution spectrale (ie. la capacité de séparer des longueurs d’onde proches), et n’a pas d’atmosphère qui pourrait affecter les mesures, comme c’est le cas pour celles faites sur la Terre. 

 

Le JWST étudiera, grâce à des cartes obtenues à une cadence élevée (avec les instruments NIRSpec et NIRCam), les variations occurrentes dans les nuages de poussières et de glaces, et recherchera des traces de composés hydratés sur la surface Martienne. Ceci étant dit, observer Mars avec le JWST ne sera pas tâche aisée! En effet, ce télescope a été conçu pour détecter des sources extrêmement distantes et faibles. Or, Mars est proche et brillante. Les observations devront donc être très soigneusement agencées de manière à éviter d’éblouir les instruments délicats du JWST.

 

Ce qui est aussi très important, observer Mars permettra de tester la capacité du JWST à suivre des objets qui se déplacent dans le ciel, ce qui est d’un extrême intérêt, avec les conséquences que l’on peut imaginer, pour pouvoir étudier notre système solaire.

L’eau et le méthane

Une grande partie de l’eau que Mars avait pu retenir dans le passé s’est perdue au fil du temps à cause des rayons ultraviolet du Soleil qui en brisèrent les molécules. Les chercheurs peuvent estimer la quantité disparue en mesurant l’abondance de deux formes d’eau légèrement différentes dans l’atmosphère de la planète: l’eau normale (H2O) et l’eau lourde (HDO), dans lequel un atome hydrogène est remplacé naturellement par du deutérium. L’hydrogène s’échapperait plus facilement dans l’espace que son isotope plus lourd (le deutérium) et cela biaiserait le rapport de H2O à HDO au fil du temps.


Le JWST sera capable de mesurer ce rapport à différentes époques, saisons et endroits.

Le sol martien est la fine couche de régolithe trouvée à la surface de Mars. 

Ses propriétés diffèrent significativement du sol terrestre. Sur Terre, le terme « sol » renvoie généralement à la présence de matière organique.

Bien que la plus grande partie de l’eau sur Mars soit enfermée dans de la glace, il n’en demeure pas moins qu’un peu d’eau liquide pourrait exister dans des aquifères souterrains (un aquifère est une formation géologique ou une roche, suffisamment poreuse et/ou fissurée tout en étant suffisamment perméable pour que l’eau puisse y circuler librement).


Ces réservoirs potentiels pourraient même héberger une forme de vie. Cette idée fascinante a eu un écho retentissant et a pris des proportions énormes lorsqu’en 2003, les astronomes ont détecté du méthane dans l’atmosphère de Mars. Ce méthane pourrait être produit par des bactéries, mais il pourrait aussi provenir de processus géologiques. Quoiqu’il en soit, la présence d’eau et de méthane aux mêmes endroits sur Mars est interprétée par plusieurs chercheurs comme un indice supplémentaire de la possibilité de l’existence d’une vie (voir le communiqué de presse de l’ESA).


Les données obtenues par le JWST pourraient fournir de nouveaux indices de premier plan sur l’origine de ces plumes de méthane (voir plus de détails sur l’article de l’ENS de Lyon en cliquant ici).

le 19 & 20 Mars 2003 

Spectres

  • Spectres montrant les raies d’absorption du méthane et de de la vapeur d’eau dans l’atmosphère martienne. Les graphes B et C correspondent, respectivement. Dans les deux cas, on note que les raies d’absorption sont plus marquées pour les moyennes latitudes de l’hémisphère Nord.
  •  
  •  (Droits réservés – © 2009 Mumma et al., Science, modifié).

Pour plus d’informations et de détails

JWST